Что такое разрешающая способность и что на нее влияет. Технические параметры камер и их значения Разрешающая способность цифровой камеры зависит от

Для того чтобы понять, как влияет структура ПЗС матрицы и расположения цветных фильтров на разрешающую способность изображения, необходимо вспомнить, как формируется изображение у большинства цифровых камер, и в чем основные отличия технологии SuperCCD.

Стандартная для современных ПЗС матриц структура цветных фильтров с основными цветами, больше известная как структура Байера или Bayer pattern (по фамилии инженера фирмы Кодак, получившего патент на изобретение этой структуры фильтров). Подобная структура оказалась дешевой и простой альтернативой трехматричным видеокамерам, у которых изображение расщепляется с помощью специальной призмы на три изображения, которые попадают на три черно-белые ПЗС матрицы, перед каждой из которых установлен свой фильтр одного из основных цветов (красный, зеленый, синий). Основным недостатком подобных структур является либо резкое падение разрешающей способности (в случае практически точного восстановления сигнала в одной точке, формируемой четырьмя пикселами), либо появление цветных артефактов при попытке выделения яркостного сигнала из всех пикселов (алиасинг) и потеря точности цветопередачи. Поэтому, как правило, с помощью различных алгоритмов цветовой интерполяции получают значения недостающих цветов в каждом из пикселов, а яркостной сигнал выделяют из всех пикселов структуры. После этого обычно применяют фильтр низких частот, не пропускающий сигналы с пространственными частотами выше 1/(1.5...2 х размер пиксела) для подавления артефактов цветовой интерполяции. Таким образом выполняется процедура антиалиасинга, подавляющая артефакты в яркостном канале (для подавления алиасинга в цветовых каналах, видимого обычно как цветной муар, используется фильтрация с более низкими пространственными частотами).

Однако, как бы ни были совершенны алгоритмы цветовой интерполяции, разрешающая способность изображения, полученного таким путем в красном и синем каналах будет значительно ниже разрешающей способности в канале яркости и зеленом канале (так как зеленых фильтров вдвое больше, чем красных и синих). Как правило, это не приводит к ощутимому ухудшению резкости изображения, так как человеческий глаз использует подобные структуры (нерегулярные) и имеет низкую чувствительность к мелким цветным деталям. Как видно из рисунка, в среднем каждый зеленый пиксел при цветовой интерполяции увеличивает свой эффективный размер в 1.5 раза, а красные и синие пикселы увеличивают свой эффективный размер в 2 раза (в 4 раза по площади). Интересной (и весьма неприятной) особенностью такого расположения фильтров является тот факт, что разрешение матрицы на диагоналях получается более высоким, чем на вертикальных и горизонтальных линиях, так как плотность расположения ячеек на диагональных линиях оказывается в 1.4 раза выше, чем на вертикальных и горизонтальных линиях. Это можно было бы расценивать как некоторую особенность Байеровской структуры, если бы не два весьма значимых субъективных фактора:

1. Как выяснилось в специально поставленных экспериментах, человеческое зрение более чувствительно к вертикальным и горизонтальным линиям, чем к диагональным (при условии нахождения человека в вертикальном положении, разумеется). Дело в том, что глаз постоянно совершает микроскопические "сканирующие" движения в горизонтальной плоскости и лучше "зацепляется" (и, следовательно, останавливается на более длительное время) на объектах, содержащих контрастные линии. Что увеличивает разрешающую способность вблизи таких контрастных деталей. Поскольку микроперемещения происходят в основном в горизонтальной плоскости, зрение (как совместная работа глаза и мозга) оказывается более чувствительным именно к горизонтальным и вертикальным линиям.

2. Большинство предметов, окружающих человека, имеют большее количество деталей, выраженных именно вертикальными и горизонтальными линиями. В большей степени это справедливо к творениям человеческих рук: от зданий и их элементов до деталей машинописного шрифта. Однако и природные объекты зачастую имеют преобладание вертикальных и горизонтальных линий (трава, деревья).

Эти два фактора заставили инженеров задуматься об оптимальности размещения цветных фильтров на матрице, в результате чего инженеры Fujifilm находят (и патентуют) изящное решение, улучшающее восприятие изображений, полученных с помощью цифровых камер, воплощенное в настоящий момент в матрицах по технологии SuperCCD. Главным отличием от Байеровской структуры стал поворот ее на 45 градусов, в результате чего диагональные линии становятся вертикальными и горизонтальными, с увеличенной площадью расположения вдоль этих осей.

Второе улучшение, которого удалось добиться при разработке SuperCCD, заключается в том, что пикселам была придана форма шестигранников, что позволило увеличить полезную площадь светоприемной ячейки по сравнению с традиционными квадратными ячейками, что позволило улучшить отношение сигнал/шум и повысить чувствительность.

Вероятно, изменение формы ячейки на шестигранную было вызвано не только улучшенным расположением периферийных схем на ячейке для увеличения ее полезной площади, но и выводами из пленочных разработок Fujifilm, где наиболее эффективными были признаны зерна гексагональной формы.

В результате изменения структуры матрицы, как видно из рисунка, изменилась эффективная форма зеленого пиксела. Если для традиционной структуры эффективный его размер составлял 1.5х1.5 размера пиксела, то в структуре SuperCCD его размер становится 1х2 размера пиксела, кроме того, в зеленом, наиболее близком к яркостному, канале не требуется интерполяция вдоль горизонтальных линий (как можно заметить, в Байеровской структуре сигнал, полученный из "зеленого" пиксела, должен быть подмешан к соседним пикселам по горизонтали и вертикали, что снижает межпиксельный контраст и, следовательно, горизонтальное и вертикальное разрешение). Второе значимое изменение заключается в том, что SuperCCD матрица имеет зеленые строки и столбцы (G) и красно-синие строки и столбцы (Y-G), в результате чего упростилось выделение яркостной (Y) составляющей из строк и столбцов по сравнению с Байеровской структурой, имеющей зелено-синие и зелено-красные строки и столбцы.

Третьим изменением, вытекающим из новой структуры, является считывание матрицы по строкам и столбцам, которые были диагоналями в Байеровской структуре (на рисунке строки и столбцы пронумерованы цифрами 1,2,3,4,5,6). В результате такого считывания матрицы, состоящей из 6 миллионов элементов, получается 12 миллионов пикселов, половина из которых должна быть получена из соседних (пространственная интерполяция). Например, в "зеленой" строке 2 в нечетных столбцах 1, 3 и 5 будут считаны "дырки", не содержащие изображения, а в "сине-красной" строке 3 такие пустоты образуются в четных столбцах 2, 4, 6...

Для записи RAW формата (файлы RAF в случае S2 Pro) считываемые с матрицы пикселы упаковываются (записывать "дырки" и тем самым увеличивать вдвое размер файла смысла не имеет), изображение вдвое (за счет "дырок") сжимается по горизонтали. В итоге сжатое изображение имеет 2192 пиксела по горизонтали и 2880 пикселов по вертикали, если учитывать технологический бордюр для калибровки (или 2144х2880 эффективных пикселов).

Для последующей обработки сжатый файл "разжимается", в результате чего восстанавливаются "дырки" в изображении, и размер изображения снова становится равным 4288х2880 пикселов (12.3Мп) без учета бордюра.

Что важно - несмотря на то, что каждый второй пиксел требуется интерполировать из соседних, яркостное разрешение вдоль вертикалей и горизонталей составляет 4288 столбцов на 2880 строк. Пространственная интерполяция недостающих пикселов производится предсказанием с учетом яркостных деталей строк и столбцов, полученных из существующих пикселов. В случае распознавания в яркостном канале горизонтальной линии, уровень недостающего пиксела производится усреднением соседних горизонтальных пикселов, в случае распознавания в яркостном канале вертикальной линии в данной строке - усреднением соседних по вертикали пикселов данного цвета. Цветовая аппроксимация производится так же, как и в случае Байеровских структур.

По рисунку можно оценить качество детализации мелких цветных объектов для SuperCCD. Если в случае Байеровских структур эффективный размер зеленого пиксела был равен размеру ячейки х 1.5, а эффективные размеры красных и синих пикселов - размеру ячейки х 2.0, то в случае SuperCCD эффективный размер зеленого пиксела равен 2.0 х размер ячейки, а красного и синего - 3.5 х размер ячейки (при сравнении 12Мп выходного разрешения 6Мп SuperCCD с 6Мп Байеровской структурой).

Следовательно, за удвоение размера файла при почти 100% улучшении разрешения в яркостном канале (41% линейно) пришлось заплатить ухудшением цветового разрешения на 77% по площади кадра (33% линейно) в зеленом канале и 300% (!) ухудшением разрешающей способности в красном и синем каналах (75% линейно). Вот уж, действительно - за все приходится платить.

Поскольку 6Мп SuperCCD матрица может быть считана только в 12Мп изображение, получение меньшего разрешения требует масштабирования. При необходимости сохранить 6Мп изображение и соответствующем масштабировании, плюсы SuperCCD по сравнению с классической структурой фильтров в значительной степени нивелируются: при небольшом 6% улучшении разрешения в зеленом канале (12% по площади), разрешение в красном и синем каналах ухудшается по сравнению с классической структурой Байера на 24% (на 50% по площади кадра) при одинаковом яркостном разрешении. Поэтому наилучшее качество изображения с SuperCCD можно получить только при считывании в максимальном разрешении, желательно в RAW формате.

Попытаемся определить максимально возможное разрешение, которое можно получить при использовании ПЗС матрицы с классической Байеровской структурой фильтров. Для этого можно подать сигналы различных пространственных частот максимального уровня и исследовать контраст получаемого изображения.

Наибольшая частота, которую можно различить при помощи регулярной структуры, определяется критерием Найквиста-Котельникова, то есть, сигналом, имеющим максимумы и минимумы размера ячейки (частота f = 1/ (2*p), где p - размер ячейки). При подаче такой частоты с нулевым (или кратным 180 градусам) фазовым сдвигом относительно регулярной структуры ячеек, такая частота вполне может быть распознана и может присутствовать в выходном сигнале, получаемом с ПЗС матрицы, как показано на рисунке. Однако при фазовом сдвиге, кратном 90 градусов (0.5 х размер ячейки), максимумы и минимумы будут равномерно распределяться по двум соседним строкам или столбцам, в результате чего контраст на выходе будет равен нулю. В среднем, при случайном значении фазы сигнала, контраст на выходе будет равен контрасту, получаемому при фазовом сдвиге 45 градусов (1/4 размера ячейки, на рисунке не показан), и составит 50% максимального. Другими словами, при отсутствии в схеме обработки сигнала фильтров антиалиасинга и фильтров повышения резкости , частотно-контрастная характеристика (MTF - modular transfer function) при пространственной частоте c периодом сигнала, равным удвоенной величине размера ячейки, будет динамически неустойчивой (то есть, зависит от случайного и непредсказуемого на практике значения фазового сдвига) и в среднем равна 0.5. Это можно записать как MTF(2)=0,5 .

При пространственной частоте с периодом, равным 2.5 х размер ячейки (максимум и минимум равны 1.25 х размер ячейки), отдельные максимумы и минимумы в выходном сигнале также оказываются трудно различимыми и имеют различный контраст, зависящий от фазы сигнала. Следовательно, такая система также оказывается динамически неустойчивой, так как распознавание таких частот и выходной контраст зависят от фазы сигнала относительно регулярной структуры матрицы. Среднее значение контраста при частоте 1/(2.5*p) будет приблизительно равно 75%, что можно записать как MTF(2.5)=0,75 .

Начиная с пространственной частоты с периодом, равным 3 х размер ячейки, уровень сигнала на выходе матрицы оказывается относительно стабильным, слабозависящим от фазы. При наилучшем совпадении фазы MTF=1, при наихудшем MTF=0.75. Среднее значение MTF(3)=0.875 . Можно сказать, что на этой пространственной частоте располагается порог стабильного распознавания. Вероятно, поэтому, например, фирма Sony, разрабатывающая как видеокамеры, так и ПЗС-матрицы, считает разрешение системы (в линиях) равным количеству считываемых с матрицы пикселов, разделенному на 1,5. Поскольку в фотографии принято измерение в парах линий на мм (определяющих не одиночный пик, а пространственную частоту), то коэффициент пересчета разрешения матрицы в пары линий требует поправочного коэффициента 3.0.

Очень похожая задача существует в полиграфии, так как изображение на бумаге передается, как правило, с помощью регулярных растров. И там, зачастую, также минимальным принимается именно коэффициент 1.5 для пересчета разрешения в пикселах на мм (ppi) в разрешение в линиях на мм (lpi) и обратно. Как правило, полиграфисты стараются иметь некоторый запас, и чаще всего, требуют разрешения файлов, исходя из коэффициента преобразования (называемого в полиграфии коэффициентом качества), равным 2.0, что позволяет точно передать амплитуду сигнала (MTF(4*p)=1 ). Конечно, встречаются и перегибы, когда полиграфисты перестраховываются и отказываются принимать снимки с коэффициентом качества ниже 3.0-4.0. Чаще всего, это происходит от слишком буквального восприятия слова "качество " применительно к коэффициенту и, соответственно, смутного понимания процесса формирования изображения.

Необходимо заметить, что критерий Найквиста-Котельникова, гарантирующий точное восстановление сигнала по его отсчетам, действует, если соблюдаются следующие условия:

Спектр входного сигнала ограничен максимальной синусоидальной частотой вдвое ниже частоты следования отсчетов, из чего, в частности, следует, что сигнал должен быть бесконечно протяженным, не имея начала и конца;
- "ширина" отсчетов бесконечно мала (дискретная функция);
- для восстановления сигнала требуется использовать идеальный фильтр низких частот с физически нереализуемой характеристикой.

При оцифровке изображений не соблюдается ни одно из вышеприведенных условий. Поэтому и производится оцифровка "с запасом", который задается коэффициентом качества. Кстати, при оцифровке звуковой информации, по тем же причинам (соблюдается только первое условие) используют избыточную частоту дискретизации. Например, для обеспечения полосы частот 20Гц-20кГц, формат записи CD Audio производит квантование на частоте 44.1кГц (коэффициент качества 1.1), в телефонии для передачи сигналов полосой 0.3-3.4 кГц используется частота дискретизации 8кГц (коэффициент качества 1.18) и т.д.

Несмотря на то, что на изображении двойного размера, получаемом с SuperCCD, половина пикселов формируется при помощи интерполяции (как видно из рисунка), для горизонтальных и вертикальных линий разрешающая способность (минимальная пространственная частота, при которой MTF получается динамически устойчивой) равна разрешающей способности матрицы с традиционной Байеровской структурой, состоящей из вдвое большего количества ячеек.

Для того чтобы оценить, насколько все вышеизложенное применимо к практической съемке, необходимо получить подтверждение о различимости пространственных частот 1/(2*p) на реальных снимках (при оптимальных условиях, поскольку ЧКХ при таких частотах динамически неустойчива). На снимке, снятом с разрешением 12Мп (4276х2868) должны быть различимы линии шириной в 1 пиксел.

Кадр, снятый камерой Fujifilm S2 Pro в 12Мп разрешении. Объектив - Nikkor AF-S 80-200/2.8 - один из лучших телезумов Nikon. Для получения достаточного для эксперимента разрешения объектива, снимок снят при фокусном расстоянии 80мм и диафрагме f/8, обеспечивающими максимальную разрешающую способность.

Фрагмент снимка в натуральную величину.

Фрагмент снимка с увеличением 5х. Можно убедиться, что по горизонтали зафиксированы линии, соответствующие пространственной частоте 1/(2*p), как и ожидалось, с динамически нестабильным разрешением. На фрагменте снимка хорошо видно цену, которую приходится платить SuperCCD технологии за увеличение разрешающей способности: цветные контуры вокруг мелких деталей изображения из-за низкой разрешающей способности в цветовых каналах.

Учитывая, что при съемке в 12Мп, разрешение снимка по горизонтали составляет 4288 пикселов при размере матрицы по горизонтали 23.0мм, это разрешение на самой матрице соответствует 186 линиям/мм или 93 парам линий/мм. Поэтому для получения столь высокой детализации на снимках, потребуется очень качественная оптика.

Разобравшись с методами вычисления предельных разрешений как для Байеровских структур, так и для структур SuperCCD, мы можем вычислить максимальные (основанные на разрешении матриц) разрешения, которые можно получить с различных популярных цифровых зеркальных камер в случае отсутствия фильтров антиалиасинга при обработке изображения.

Для этого воспользуемся формулами:
Rs = Nl/Ll/3, пар линий/мм (lp/mm)
Ru = Nl/Ll/2, пар линий/мм (lp/mm)
где Rs - динамически устойчивое разрешение, Ru - динамически неустойчивое разрешение, Nl - количество пикселов изображения по длинной стороне кадра, Ll - размер матрицы по длинной стороне кадра в миллиметрах.

Для расчета разрешения по длинной стороне кадра:
Rfs = Nl/3, пар линий по длинной стороне кадра
Rfu = Nl/2, пар линий по длинной стороне кадра
где Rfs - динамически устойчивое разрешение, Rfu - динамически неустойчивое разрешение

Некоторые замечания о пленочной (галогеносеребряной) технологии

Я не стану подробно описывать структуру эмульсии фотопленки, предполагая некоторое знакомство читателя с галогеносеребряными технологиями получения изображения. Возможно, для лучшего понимания необходимо вкратце остановиться на основных принципах получения фотографического изображения на фотопленке.

1. Эмульсия фотопленки состоит из мельчайших (0.1...1мкм в диаметре) кристаллов галогенидов серебра (AgCl, AgJ, AgBr), являющихся полупроводниками. Каждый кристалл состоит из ионной решетки, в вершинах которой находятся положительно заряженные ионы серебра и отрицательно заряженные ионы галогена (хлор, бром, йод). Расстояния между атомами строго фиксировано, фиксация ионов в кристаллической решетке осуществляется электростатическими силами. На поверхности зерен атомы серы (из входящих в состав желатины соединений серы) рекомбинируют с приповерхностными ионами серебра, образуя соединение Ag2S.

2. При попадании фотона внутрь кристалла, он выбивает слабосвязанный электрон, который блуждая внутри кристалла может быть либо вновь захвачен положительно заряженным узлом, из которого был выбит электрон (этот процесс называется рекомбинацией, и в этом случае образования скрытого изображения не происходит), либо может быть захвачен другим узлом, который приобретает в этом случае дополнительный отрицательный заряд. Электрон перемещается на соседний ион галогена, тем самым происходит перемещение "дырки" вплоть до границы кристалла. Кристалл находится в слое желатины, содержащей соединения серы, и нейтральный атом галогена, появившийся на поверхности кристалла и не связанный с решеткой, легко образовывает устойчивое соединение с добавками в желатине. В кристаллах всегда присутствует некоторое количество ионов серебра, не связанных ионной решеткой, такие ионы могут хаотично перемещаться, выбивая из решетки другие ионы серебра, которые становятся свободными, занимая их место в решетке. Локализация фотоэлектрона вблизи молекулы Ag2S на поверхности кристалла вызывает притяжение свободного иона серебра на поверхность кристалла (если ион расположен достаточно близко), в результате чего при выходе иона серебра на поверхность, он нейтрализуется фотоэлектроном и образует свободный атом серебра на поверхности кристалла. Для того, чтобы зерно стало способным к проявлению , необходимо, чтобы возле расположения атома Ag2S собралось не менее четырех нейтральных атомов серебра . Поскольку молекула Ag2S не может захватить более одного фотоэлектрона за раз, при очень большой освещенности и короткой выдержке, пропорциональность образования зерен, способных к проявлению, нарушается (эффект невзаимозаменямости или эффект Шварцшильда) как вследствие образования очереди электронов, так и вследствие рекомбинации внутри кристалла (повышается вероятность обратного захвата фотоэлектрона атомом ионной решетки).

3. В одном зерне со средним размером 1мкм находится около 32 млрд. ионов серебра. Для образования скрытого изображения требуется выход на поверхность зерна не менее 4 атомов серебра. При проявлении зерна, на поверхность которых вышло более 4 атомов серебра, все ионы серебра, находящиеся в этом зерне, будут превращены в атомарное серебро (проявитель является "донором" электронов). В результате чего такое зерно станет черным на просвет. Зерна, на поверхности которых оказалось меньше атомов серебра, не будут проявлены, а будут растворены и выведены из эмульсии при фиксировании изображения (закрепитель). Итак, можно сказать, что проявление является усилением скрытого изображения с коэффициентом усиления до 32млрд. / 4 = 8 миллиардов раз. В реальных условиях на поверхности зерна может находиться гораздо больше, чем 4 атома серебра, так что средний коэффициент такого усиления окажется "всего" около 1 миллиарда.

4. Следует заметить, что зерна могут принимать только два состояния: они могут быть либо проявлены (восстановлены до металлического серебра), либо нет. Соответственно, черно-белое полутоновое изображение состоит из огромного количества черных зерен, случайно разбросанных по поверхности, а вероятность экспонирования зерна пропорциональна экспозиции. Чем большее количество света экспонировало фотопленку, тем большее количество зерен окажется проэкспонированным и проявленным, что в результате приведет к увеличению оптической плотности изображения (однако при этом ХК всегда имеет S-образную форму вследствие нелинейности при малых освещенностях из-за необходимости экспонирования зерна не менее 4 фотонами, а также из-за всегда присутствующей минимальной плотности почернения - вуали, что примерно соответствует тепловому шуму ПЗС матрицы).

5. Цветные фотопленки состоят из трех слоев, каждый из которых поглощает свет только своего диапазона длин волн (красный, зеленый, синий), и кроме зерен галогенида серебра содержат пурпурный, желтый и голубой (CMY) красители в соответствующих слоях, которые при цветном проявлении создают вокруг проявленного зерна цветное облако (за счет взаимодействия красителей с продуктами окисления проявляющих веществ, образующимися вокруг проявляемых зерен или конгломератов из зерен), после чего в процессе осветления зерна металлического серебра растворяются, а в процессе фиксирования растворяются и неэкспонированные зерна галогенида серебра. Цветные полутона передаются плотностью, с которой расположены облака красителя, то есть, определяются плотностью расположения проявленных зерен серебра в каждом из слоев. Как правило, такие облака красителя образуют кластеры, размеры которых значительно превышают размер отдельных зерен галогенида серебра.

Структура изображения фотопленки более всего напоминает получение изображения при струйной печати тремя красками (CMY). И так же, как и в струйной печати, размер единичного зерна (капли) не может определять разрешающей способности при передаче полутоновых объектов. Сравнивать галогеносеребряную технологию и технологию получения изображения посредством ПЗС матриц напрямую невозможно, так как принципы получения изображения сильно отличаются - не меньше, чем технологии струйной и термодиффузионной печати.

Позитивная (обращаемая) фотопленка имеет близкую к негативной структуру (у позитивной пленки отсутствует маска, и, как правило, уменьшена толщина слоя), однако проявление осуществляется в два этапа (на рисунке показан один из слоев цветной пленки):

1. На первом этапе (черно-белое проявление) происходит проявление, сходное с проявлением негативной пленки: экспонированные зерна восстанавливаются до металлического серебра. После этого в растворе отбеливателя металлическое серебро растворяется и выводится из пленки.

2. Пленка подвергается повторной засветке (либо источником света, либо химической), призванной экспонировать все оставшиеся в слое неэкспонированные зерна, после чего проявляется в цветном проявителе и в дальнейшем отбеливается и фиксируется. По сути, процесс обращения пленки позволяет вычесть из общего количества зерен проэкспонированные и инвертировать (засветить, проэкспонировать) неэкспонированные, тем самым получая позитивное изображение.

Оценка информационной емкости фотопленок

Создатели технологии New Reala Technology из Fujifilm оценили в интервью информационную емкость пленки Velvia, имеющей гранулярность G=9, в 30 миллионов эффективных элементов изображения. Скорее всего речь шла о количестве эффективных элементов (или кластеров цветообразующих веществ) в трех цветовых слоях, что означает около 10 Мп цветного изображения.

Если вспомнить, что среднеквадратичная гранулярность позитивной пленки наиболее простым способом может быть определена как (критерий Гороховского):
G = 100 / M , где
G - значение гранулярности,
M - масштаб увеличения, при котором становится заметным зерно
width=10>и тот факт, что человеческий глаз различает точки размером 0.1мм = 100 микрон, можно вычислить размер видимой пленочной гранулярности как
S = G x 10^-6
Видимый размер гранулярности не является размером зерна пленки, который, как правило, существенно ниже (0.1-1мкм), но размером "информационного элемента" или кластера цветообразующих компонент, размеры которого значительно крупнее. Среднеквадратичная гранулярность измеряется микроденситометром, имеющим щель, через которую проходит очень узкий пучок света, но не менее 10 диаметров размера зерна (Kodak использует пучок света диаметром 48мкм). При "сканировании" таким микроденситометром поля серой шкалы, имеющего плотность 0.5D, получают сильно зашумленную кривую оптической плотности, по которой определяется средняя плотность и среднеквадратичное (стандартное) отклонение от средней величины. Известно, что среднеквадратичное отклонение обратно пропорционально квадратному корню из площади апертуры луча, поэтому среднеквадратичная гранулярность определяется как

где а - площадь апертуры луча (подробнее можно прочитать на сайте Kodak).

Размер видимого макрозерна (образованного облаками красителя) пленки Fuji Velvia, имеющей значение гранулярности G=9, составляет 9мкм, что в терминах цифровой фотографии означает размер эффективного пиксела. Тогда оценочное разрешение этой пленки
R = 36мм / 9мкм x 24мм / 9мкм x 3 слоя = 4000x2467x3 = 32 Мп (или полноцветных 10.6Мп)

Полученная в результате расчета величина достаточно точно согласуется с данными разработчиков (30 миллионов элементов изображения).

Для фотопленки Fuji Provia 100 (старого типа), имеющей гранулярность G=10, размер видимого макрозерна составит 10мкм, тогда ее разрешение

R = 36мм / 10мкм x 24мм / 10мкм x 3 слоя = 3600x2400x3 = 26 Мп (или полноцветных 9 Мп),

что также хорошо согласуется с оценкой разработчиков (около 30 миллионов эффективных элементов изображения).

Для новой и очень удачной фотопленки Provia 100F, имеющей гранулярность G=8, видимый размер макрозерна окажется около 8мкм. Ее разрешение при этом

R = 36мм / 8мкм x 24мм / 8мкм x 3 слоя = 4500x3000x3 = 40.5 Мп (или полноцветных 13.5Мп).

Для этой пленки разработчики дали оценку в 50 миллионов эффективных элементов. Что, возможно, означает, что они считали ее 4-х слойной или учитывали дополнительные улучшения, заложенные в технологию этой пленки.

Можно также оценить разрешающую способность пленки, имеющую эффективный размер "пиксела" 8мкм: 1мм/8мкм = 125 штрихов = 62.5 пар линий/мм. Поскольку зерно у пленки расположено стохастически, коэффициент качества можно считать близким к 1, что позволяет считать распознаваемыми на пленке около 60 пар линий/мм . К этой цифре мы еще вернемся чуть ниже.

Эти оценки разрешения позитивных фотопленок сделаны для видимого размера макрозерна, иногда можно распознать детали, которые сформированы отдельными зернами, имеющими размер не более 1мкм (однако с очень низким, менее 1, отношением сигнал/шум: одиночное зерно может быть либо проявленным, либо нет и не несет информации об оттенках яркости или цвета).

Разрешение пленки, приводимое производителями (например, 140 пар линий/мм для пленки Provia 100F) вычисляются при низких значениях ЧКХ (MTF=7%) и очень высоком значении контраста исходного объекта (1000:1). Высокое разрешение формируется за счет отдельных стохастически распределенных зерен, в таком изображении присутствует высокий уровень шума, а разрешение зависит от контраста исходного изображения, что говорит о динамической неустойчивости полученного изображения (нельзя дважды снять один и тот же кадр - распределение в кадре зернистости будет уже другим). Ведь задачей фотографии является получение точной копии фотографируемого изображения, а не точной копии структуры зерна на пленке.

Вероятно, для сравнительной оценки разрешения, получаемого с помощью галогеносеребряного процесса, следует использовать данные разрешающей способности для низкоконтрастных объектов, которые ближе к реальной съемке полутоновых объектов. Так, для Provia 100F, по данным производителя, разрешающая способность при контрасте объекта 1:1.6 равна 60 парам линий/мм.

Другой способ измерения разрешающей способности фотопленки для сравнения с разрешающей способностью ПЗС матрицы требует определения разрешающей способности пленки на уровне MTF не менее 20% (хотя для ПЗС матрицы мы выбрали порогом динамической устойчивости уровень MTF=87.5%). При таком пороге разрешающая способность пленки Provia 100F, как видно из графика, составляет примерно 60-65 пар линий/мм и совпадает с разрешающей способностью для низкоконтрастных объектов.

Частотно-контрастная характеристика (ЧКХ, MTF) позитивной фотопленки Fuji Provia 100F (использован график из официальной документации Fujifilm, график экстраполирован для высших пространственных частот 60-135 пар линий/мм).

Из графика MTF также можно сделать интересное наблюдение: начиная с пространственных частот 20-30 пар линий/мм, контраст неизбежно падает, что можно объяснить невозможностью получения деталей изображения из крупных зерен или конгломератов (так как они участвуют в формировании изображения с более низкими пространственными частотами). Передача высоких пространственных частот достигается за счет участия все меньшего количества все меньших по размеру кластеров (на фоне проэкспонированных крупных кластеров), что ведет к потере контраста.

Для сравнения можно привести фрагмент снимка, снятого камерой Nikon F80 на пленку Fujifilm Superia Reala тем же объективом с такой же экспозицией и с той же точки (со штатива), что и приведенный выше снимок, сделанный камерой S2 Pro. В результате чего снимок занял на пленочном кадре (24х36мм) размер, соответствующий размеру матрицы S2Pro (23х15.7мм).

Разрешение сканирования 4000dpi (Nikon SuperCoolScan 4000ED) с последующим усилением контурной резкости (радиус 0.3, уровень 300%). В результате сканирования был получен файл 5650х3650 (21Мп). Фрагмент увеличен в 5 раз.

Можно сделать вывод, что разрешающая способность негативной фотопленки Fuji Superia Reala при стандартной обработке и сканировании в 4000dpi при одинаковом с ПЗС матрицей размере кадра (23.0х15.7мм) имеет разрешающую способность ниже, чем разрешение SuperCCD матрицы. То есть, разрешения 93 пары линий/мм из системы пленка-сканер добиться не удалось. Однако пленочный кадр в 2.25 раза больше по площади, чем площадь SuperCCD, используемой в камере S2Pro, поэтому сравнение разрешающей способности пленочного и цифрового кадров оставим для субъективного сравнения технологий.

Необходимо сказать несколько слов о сканировании и разрешении. Мне неоднократно приходилось слышать мнения, что разрешения 4000dpi для получения всей съемочной информации из пленочного кадра более чем достаточно, и при дальнейшем увеличении разрешения сканирования большего числа деталей получить не удастся (ведь нас вряд ли заинтересует случайное расположение отдельных зерен галогенида серебра черно-белой пленки или цветных кластеров цветной пленки в кадре). На сегодняшний день хороший слайд-сканер с разрешением 4000dpi - достаточно дорогое устройство, по цене не намного уступающий цифровой зеркальной камере любительского класса. Именно поэтому смысла сравнивать пленочную технологию с разрешением сканирования 8000dpi я посчитал неразумным, ведь в этом случае стоимость комплекта пленочной камеры с таким сканером может значительно превысить стоимость цифровой "зеркалки". Однако оценить возможности сканирования с различным разрешением мне представляется крайне желательным.

Сканирование с разрешением 4000 dpi позволяет устойчиво распознать 4000 / 25.4 / 3 lpmm = 52.5 пар линий/мм или неустойчиво 4000 /25.4 / 2 lpmm = 78 пар линий/мм.

Сканирование с разрешением 8000 dpi позволяет устойчиво распознать 8000 / 25.4 / 3lpmm = 103 пар линий/мм или неустойчиво 8000 / 25.4 / 2 lpmm = 156 пар линий/мм.

Поскольку лучшие из пленок общего назначения достигают разрешения 135-145 пар линий/мм (при съемке миры абсолютного контраста 1000:1, очень низком отношении сигнал/шум и значении MTF=5...7%), а лучшие стандартные объективы могут достичь разрешающей способности около 100 пар линий/мм (при MTF=3...5%), суммарная разрешающая способность пленка-объектив при различимом контрасте (MTF=3..5%) редко может превзойти 60 пар линий/мм. Что требует 60*3*25.4 = 4572 пар линий/мм для устойчивого сканирования без проявления эффектов алиасинга. Это разрешение, как правило, может быть достигнуто при использовании сканера, имеющего 4000dpi при некотором падении контраста с последующим усилением контурной резкости. Сканер, имеющий разрешение 8000dpi, имеющий такой же объектив как у 4000dpi сканера, позволит улучшить детализацию не более, чем на 60lp/mm (разрешение системы объектив-пленка ) - 52.5 lp/mm (разрешение 4000dpi сканера ) / 52.5 = 14% дополнительной информации об объектах.

Как правило, сканеры с разрешением 8000dpi имеют еще более качественную оптику (судя по сканерам Nikon SuperCoolscan 4000 и 8000) с лучшей собственной ЧКХ, что в совокупности с вдвое большим разрешением может улучшить передачу мелких деталей изображения до 20-25% (и гораздо точнее передать расположение зерна, что, впрочем, не является основной целью сканирования).

Позволю себе привести пример, иллюстрирующий практическую достаточность сканирования с разрешением 4000dpi. Первый кадр получен с помощью сканирования на сканере Nikon SuperCoolScan 4000ED в максимальном качестве и увеличен до 600%, второй получен с этого же снимка миры под микроскопом (увеличение 120х, кадр уменьшен в 4 раза):

Действительно, разрешающая способность фотопленки достигает величин 130-145 пар линий/мм (что и приводится в документации производителей) - это прекрасно видно из иллюстрации (сканер не может передать более 78 пар линий/мм). Однако такое разрешение не может считаться не только динамически устойчивым, но и полезным, так как уровень шума превышает уровень полезного сигнала.

При прочих равных условиях использование пленочных сканеров с 8000dpi не является оправданным для сканирования обычных сюжетов (хотя бы потому, что в 4 раза увеличивается объем файла при 20-25% улучшении передачи мелких деталей). Кроме того, при съемке объективами среднего класса (не говоря уже о бюджетной оптике), выигрыша при сканировании с таким высоким разрешением может не оказаться вообще (что, скорее всего, и объясняет мнения фотографов о достаточности сканирования в 4000dpi). Тем не менее, сканеры с разрешением 8000dpi незаменимы при научных исследованиях, для сканирования специальных пленок, имеющих очень высокое разрешение при использовании специальной высококонтрастной оптики для копировальных работ и т.п.

Выводы:

Фотопленка в состоянии обеспечить разрешающую способность 50-60 пар линий/мм при приемлемом отношении сигнал/шум и до 130-145 пар линий/мм при превышении уровнем шума (гранулярности) уровня сигнала. Высокое разрешение может быть полезным при специальных видах съемки, например, в астрономии при использовании мощных алгоритмов обработки изображения для выделения полезной информации из сильно зашумленного сигнала.

Если вернуться к сравнению технологий, можно подсчитать, что для получения динамически устойчивого разрешения 62 пары лин/мм (как у ПЗС S2Pro), потребуется пленочный сканер с разрешением 4720dpi (при кадре, равном размеру ПЗС матрицы) или сканирование стандартного кадра 24х36мм с разрешением 3150dpi.

Теперь мы можем дополнить таблицу разрешающей способности цифровых камер результатами негативной и позитивной пленок, а также результатами, получаемыми при их сканировании.

Размер поля изображения, мм Разрешение кадра, пикселов Общее количество пикселов изображения, миллионов пикселов Размер пиксела (элемента изображения), мкм
Nikon D100 23.4x15.6 3032x2016 6,1 7.8
Canon D60 22.7x15.1 3072x2048 6,3 7.4
Fujifilm S2 Pro 23.0x15.5 4288x2880 12,3 ~7.45
Canon 1Ds 35.8x23.8 4064x2704 12,3 ~8.8
Kodak DCS 14n 36x24 4536x3024 13,7 ~7.9
36x24 --- --- <1
36x24 --- --- <1
Film Provia 100F (eval)* 36x24 4500x3000 13,5 8
4000dpi scan 36x24 5669x3779 21,4 6.35
8000dpi scan 36x24 11338x7559 86,1 3.2
Динамически устойчивое разрешение, пар линий/мм Динамически устойчивое разрешение, пар линий по длинной стороне кадра Динамически неустойчивое разрешение, пар линий/мм Динамически неустойчивое разрешение, пар линий по длинной стороне кадра
Nikon D100 43.2 1011 64.8 1516
Canon D60 45.1 1024 67.7 1537
Fujifilm S2 Pro 62.0 1426 93.2 2144
Canon 1Ds 37.8 1353 56.8 2033
Kodak DCS 14n 42.0 1512 63.0 2268
Film Provia 100F(по данным производителя) 60 ~2160 140 ~5040
Film Superia Reala (по данным производителя) 63 ~2268 125 ~4500
Film Provia 100F (eval)* 50-60 1800..2100 62,5 ~2250
4000dpi scan 52.5 1890 78 2808
8000dpi scan 103 3708 156 5616

* - разрешающая способность по оценке гранулярности. Возможно, наилучший способ заочно сравнить качество снимков при использовании разных технологий.

Что может показаться странным: в большинстве независимых тестов разрешающей способности S2 Pro показал результаты несколько хуже, чем камеры с полноразмерными матрицами с 11-14Мп (но гораздо лучшее, чем камеры с 6Мп матрицей и традиционным расположением пикселов). Этому есть, как минимум, два объяснения:

S2 Pro имеет более высокое разрешение ПЗС матрицы, которое, как правило, не может быть достигнуто с большинством стандартных зум-объективов. Если ЧКХ объектива на пространственной частоте 93 пары линий/мм составляет около 3-5%, произведение ЧКХ матрицы и объектива окажется ниже 2-3% (минимально различимого контраста). Поэтому при тестировании разрешающей способности должны использоваться объективы высочайшего класса для получения сравнимых результатов.

S2 Pro выдает снимки с повышенным уровнем цветных артефактов на высоких пространственных частотах из-за необходимости пространственной интерполяции недостающих пикселов.

Кстати, из этого утверждения можно сделать вывод, что для получения выгод от использования в камере матрицы SuperCCD, необходимо использовать высококлассную оптику. С другой стороны, для раскрытия потенциала матриц 11-14Мп камер с полноразмерной матрицей достаточно разрешения 50-60 пар линий/мм, то есть, более дешевых объективов по сравнению с объективами, имеющими разрешение 90 пар линий/мм. Однако объективы для полноразмерных матриц должны обеспечивать хорошее разрешение и отсутствие хроматических аберраций на краях кадра (что некритично при использовании полуформатных матриц).

Разрешение определяет степень детализации изображения, формируемого камерой видеонаблюдения, причем этот параметр определяется несколькими факторами:

  • характеристиками матрицы камеры,
  • объективом (его качеством, фокусным расстоянием),
  • дистанцией до наблюдаемого объекта.

Ниже будут рассмотрены все эти моменты, однако, следует иметь ввиду, что разрешение системы видеонаблюдения в целом определяется также другими устройствами, например:

  • записи (видеорегистратор, видеосервер),
  • отображения (монитор).

Несмотря на то, что разрешающая способность камеры видеонаблюдения определяется количеством пикселей ее матрицы для аналоговых видеокамер она указывается в ТВЛ (телевизионных линиях). Эта величина определяется с помощью специальной таблицы, означает сколько чередующихся черно - белых полос видеокамера может воспроизвести по вертикали или горизонтали (рис.1).

Условно АНАЛОГОВЫЕ КАМЕРЫ можно подразделить на устройства стандартного (380-420 ТВЛ, что соответствует примерно 500 пикселям по горизонтали) и высокого (560-600 ТВЛ - около 750 пикселей) разрешения. Правда, сейчас производятся видеокамеры с разрешением порядка 1000 ТВЛ.

Разрешение IP КАМЕР определяется как произведение количества пикселей по горизонтали и вертикали матрицы (рис.2). Измеряется оно в мегапикселях. В паспортных данных указывается именно произведение. Для того, чтобы отдельно определить разрешение по горизонтали и вертикали следует учесть, что соотношение сторон матрицы составляет 3:4.

Если обозначить разрешение по горизонтали, вертикали, а также камеры в целом соответственно как Хг, Хв, Хк , то получим:

Хг=√Хк/0,75

Хв=0,75*Хг

Следующий момент, влияющий на детализацию изображения - расстояние до объекта видеонаблюдения (рис.3).

Объекты Н1 и Н2 отображаются на матрице одинаковым размером Нм, несмотря на то, что их реальные размеры различны. То есть, на каждый из них приходится одинаковое количество элементов матрицы. Соответственно, степень детализации объекта Н1 будет выше (рис.4).

Стоит заметить, что при организации системы видеонаблюдения практический интерес представляет именно детализация изображения, которая, как было показано, зависит не только от разрешения камеры.

Изменяя угол обзора камеры видеонаблюдения, который, кстати, зависит от фокусного расстояния объектива, можно получать нужную степень детализации объектов, находящихся на различном удалении от видеокамеры.

Существуют формулы, позволяющие произвести необходимые расчеты, соответствующие сводные таблицы, однако, для удобства можете воспользоваться онлайн калькуляторами для расчета угла обзора и фокусного расстояния видеокамеры.

Поскольку задачей данной статьи является изложение самых основ, касающихся разрешающей способности видеокамер, то внимание на том, что разрешения по горизонтали и вертикали различны не акцентировалось. В определенных ситуациях этот момент нужно учитывать, но для понимания сути вопроса, изложенного материала должно быть достаточно.


* * *


© 2014-2019 г.г. Все права защищены.
Материалы сайта имеют исключительно ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Термин «разрешающая способность» на удивление трудно понять в полной мере. Если говорить что другой термин того же значения, хоть и близкий, - «разрешение», более понятен для большинства пользователей. Но разобраться со всеми нюансами его использования в видеонаблюдении очень непросто.

Заданием данной публикации является осветление следующих моментов:

  1. В чем заключается традиционное понимания «разрешения», способность различать детали? В чем состоят ограничения подобного подхода?
  2. Что означает разрешение в видеонаблюдении, число пикселов? Что ограничивает использование подобной метрики?
  3. В чем отличия между разрешением матрицы и разрешением передачи потока?
  4. Как сильно компрессия может повлиять на разрешение?
  5. Чем ограничивается значение разрешени?

Разрешение - способность различать детали

В переводе с традиционного английского языка слово «разрешение» переводится, как способность различать детали. Например, можете ли вы в таблице, которую используют для проверки зрения, рассмотреть самую нижнюю строчку? А насколько четкое изображение сможет показать камера, когда снимки с нее будут просматриваться через монитор смежных штрихов? Именно это и является основным показателем качества, который ориентируется на результат.

Так уж получилось, что в отрасли видеонаблюдения обычно используют именно такой подход. Разрешающую способность камеры измеряли количеством телевизионных линий, то есть, измерялось количество штрихов, которое может обеспечить камера на мониторе. Чем больше штрихов можно увидеть, тем больше можно будет разглядеть деталей, которые снимала камера из реального мира - черты лица человека, номера автомобиля, и прочее.

В чем же состояли ограничения такого подхода? На самом деле все достаточно просто. Дело в том, что разрешающую способность камер, то есть количество линий на мониторе, всегда измеряли в условиях с хорошим освещением. Но само собой, что камера не может выдавать такое же качество картинки, если ее засветит солнце, или наоборот, освещение будет отсутствовать. Тогда, конечно же, качество съемки значительно ухудшается. Еще одну дополнительную сложность представляет тот факт, что невозможно измерить определенный алгоритм изменения качества съемки, для всех камер изменения будут разными.

Теоретически такой подход может быть применен для измерения качества камеры, но не стоит забывать, что точный результат он показывает только в идеальных условиях, которых в реальности добиться почти невозможно.

Разрешение - число пикселей

В наше время, когда большинство систем видеонаблюдения было переведено на , производители так же применяют в их отношении попытки измерить качество общее качество съемки. Для этого просто подсчитывают количество физических пикселей в матрице видеокамеры. Принято считать, что чем больше пикселей (так же, как раньше ориентировались на количество телевизионных линий) может выдавать видеокамера, тем выше будет качество изображения.

По аналогии с классическим измерением разрешающей способности камеры, которое проводилось в идеальных условиях, производители и сейчас продолжают игнорировать проблемы, которые могут повлиять на качество съемки.

Бывают, конечно, некоторые исключения, но в большинстве случаев, чем хуже освещенность, тем ниже будет качество съемки и тем ниже будет реальная разрешающая способность камеры. Например, камеры со сравнительно небольшим количеством пикселей благодаря лучшей технологии обработки изображения могут обеспечить гораздо более высокое качество съемки, как при ярком освещении от солнца, так и в условиях широкого динамического диапазона освещения.

Но, несмотря на это, сейчас количество пикселей считается одной из основных характеристик приборов видеонаблюдения. Несмотря на все эти ограничения, стоит всегда помнить, что ведя разговор на тему разрешающей способности, чаще всего даже профессионалы при этом имеют в виду не саму разрешающую способность, а количество пикселей. Кроме того, разрешающая способность может проявляться и в других формах.

При равных условиях, чем большим будет разрешение камеры (число пикселей), тем больше она будет стоить. И хотя камера может обладать многими характеристиками, всегда помните о том, что при низкой освещенности или большой ширине динамического диапазона качество картинки может сильно меняться.

В таблице приведены примеры разрешения камер видеонаблюдения, наиболее часто встречающихся на своременном рынке безопасности:



Заместитель директора по развитию Андреев Кузьма.

Объектив принципы работы

Методическое пособие по системам охранного телевидения

Н.В. Будзинский, А.Г. Зайцев, А.С. Гонта, А.А. Михайлов

Объектив в CCTV – оптическая система, формирующая изображение на фоточувствительном элементе видеокамеры.

Рис. 1Схема объектива
Объектив состоит из группы передних линз, диафрагмы и группы задних линз. Разрез одного из объективов приведен на рис. 1.
Объективы бывают сферические и асферические. Каждый из этих объективов может иметь просветленную или обыкновенную оптику.
Сферические объективы получили большее распространение в связи с тем, что они изготавливаются из сферических линз, которые дешевы в изготовлении и технологичны.
Однако им присущи недостатки – так называемые сферические аберрации, которые ухудшают качество изображения (разрешающую способность) и ограничивают максимально возможное отверстие диафрагмы (F-число таких объективов обычно имеет величину F1.2 – F1.4).
Асферический объектив внешне отличается от сферических объективов видом передней линзы. У таких объективов аберрационные искажения имеют незначительную величину, что позволяет им иметь F-число F0.75 – F0.8. Такое маленькое значение F-числа позволяет в среднем в три раза увеличить световой поток, проходящий на видеокамеру.
Применение асферической оптики оправдано также в случаях, когда недостаток освещенности зоны наблюдения не может быть восполнен никаким другим способом.
Сферические и асферические объективы могут иметь просветленную оптику. Она уменьшает светорассеяние на пути прохождения светового потока до ПЗС-матрицы. Для уменьшения светорассеяния в объективе на линзы, имеющие контакт с воздухом, наносят специальное покрытие, и такие объективы носят название «просветленный объектив».

Она предназначена для регулирования количества света, попадающего на ПЗС-матрицу видеокамеры. Диафрагма состоит из лепестков, количество которых может быть от 3 до 20. Чем больше лепестков в диафрагме, тем больше отверстие диафрагмы приближается к окружности, создавая тем самым равномерно освещенное световое пятно на ПЗС-матрице. Шкала диафрагмы стандартизована и образует следующий ряд относительных отверстий:

1:0,7; 1:1; 1:1,4; 1:2; 1:2,8; 1:4; 1:5,6; 1:8; 1:11; 1:16; 1:22; 1:32; 1:45; 1:64.
Внешний вид ирисовой диафрагмы, с различными значениями относительных отверстий, приведен на рис. 2. Знаменатели относительных отверстий (2; 2,8; 4; 5,6) называются диафрагменными числами

Рис. 2 Внешний вид ирисовой диафрагмы, с различными значениями относительных отверстий

Значение диафрагмы влияет на такие параметры, как:

– аберрация – чем меньше отверстие диафрагмы, тем ниже уровень аберраций и выше разрешение, но только до определенного предела (обычно 1:8 – 1:11), далее разрешение опять падает из-за влияния дифракции;

– глубина резкости – чем меньше отверстие, тем больше глубина резкости.

К сожалению, значение диафрагм на объективах, используемых в CCTV, определить невозможно в связи с тем, что на корпусе объектива отсутствует шкала диафрагменных чисел.

По управлению диафрагмой объективы CCTV можно разделить на группы в соответствии с рис. 3.

Рис. 3 Группы объективов по управлению диафрагмой

Объективы без диафрагмы используются только с видеокамерами, имеющими автоматический электронный затвор (Shutter).

Объективы с диафрагмой подразделяются в свою очередь на объективы с ручной диафрагмой и объективы с автоматической диафрагмой.

Объективы с ручной диафрагмой используются в местах с постоянной освещенностью (в помещениях с искусственным освещением). Такие объективы можно использовать и на улице, но с камерами, имеющими режим автоматического электронного затвора.

Объективы с автоматической диафрагмой управляют световым потоком за счет сигналов, приходящих от видеокамеры. Такие объективы используются в условиях больших перепадов освещенности и внешне отличаются от остальных объективов наличием кабеля с разъемом, который подключен к видеокамере.

По сигналам управления, приходящим от видеокамеры, объективы с автоматической диафрагмой подразделяются на:

– управление диафрагмой в соответствии с изменяющимся видеосигналом (Video Drive);

– управление диафрагмой постоянным током (Direct Drive).

Управление диафрагмой по видеосигналу (Video Drive) означает, что анализ видеосигнала и управление мотором диафрагмы осуществляет специальное устройство, размещенное в объективе.

Управление диафрагмой по постоянному току (Direct Drive) означает, что схема принятия решения о положении диафрагмы находится в видеокамере, а в объективе имеется только мотор как исполнительное устройство.

На корпусе объективов с управлением диафрагмой по видеосигналу присутствуют два регулирующих элемента. Обозначаются они как «Level» и «ALC».

Регулировка «Level» используется для настройки режима работы электронной схемы объектива по реальной освещенности. При вращении регулятора «Level» мы искусственно изменяем значение диафрагмы. На мониторе изменение положения регулятора «Level» воспринимается как изменение яркости изображения.

Регулятор «ALC» имеет две области регулирования. Это область средних значений (обозначается «А») и область пиковых значений (обозначается «Р»).

Регулятор «ALC» используется для устранения обратной засветки в высококонтрастных сюжетах.

Объективы с управлением диафрагмой по постоянному току (Direct Drive) не имеют на своем корпусе никаких регулировок. Настройка таких объективов осуществляется на видеокамере, которая должна иметь уже известные нам органы настройки «Level» и «ALC».

Принцип работы автоматической диафрагмы

Автоматическая диафрагма в объективах обеспечивает возможность видеокамере иметь на ПЗС-матрице постоянный уровень освещенности, независимо от ее изменения на объекте. Для решения такой задачи автоматическая диафрагма должна иметь в своем составе устройство управления диафрагмой и блок анализа уровня освещенности на ПЗС-матрице. В качестве элемента управления диафрагмой используется миниатюрный электромотор, а освещенность на ПЗС оценивается по видеосигналу, формируемому видеокамерой. Чтобы привязать уровень освещенности на объекте к допустимому уровню освещенности на ПЗС-матрице, на объективе есть регулировка «Level». Если эта регулировка выставлена неправильно, то изображение на мониторе может быть или очень темным, или настолько ярким, что некоторые места изображения будут пересвеченными. Поэтому правильным положением регулятора «Level» можно считать такое, при котором при вращении регулятора изображение из пересвеченного становится нормальным. После такой настройки, какой бы ни была освещенность на объекте, диафрагма займет положение, при котором освещенность на ПЗС-матрице будет максимально допустимой (подробно см. в разделе «Настройка и регулировка объектива»).

Рис. 4 Принцип работы автоматической диафрагмы

Рассмотрим, как работает автодиафрагма. Установим перед видеокамерой тест-таблицу (рис. 4а), состоящую из полос разной яркости. К видеокамере подключим монитор, и наша тест-таблица будет отображаться на экране в виде шести градаций яркости (рис. 4b). Ко второму выходу монитора подключим осциллограф и настроим его на отображение одной строки. На экране осциллографа изображение тест-таблицы будет выводиться в виде шести равномерно расположенных ступенек (рис. 4с). Нижняя ступенька соответствует черной полосе на тест-таблице, а самая верхняя – белой полосе. Ступеньки, находящиеся между ними, передают промежуточные градации яркости. Для наглядности справа от осциллограммы изображена вертикальная полоска с яркостями соответствующих ступенек.

А теперь представим себе, что по каким-то причинам уровень яркости белой полосы на нашей тест-таблице значительно возрос. Такое увеличение яркости на входе видеокамеры будет присутствовать и в ее выходном сигнале (рис. 5а) в виде существенно увеличенной амплитуды белой полосы относительно «уровня белого». Поэтому автодиафрагма сразу же начнет уменьшать отверстие диафрагмы, тем самым, уменьшая и амплитуду выходного сигнала до такого значения, когда амплитуда белой полосы вернется к «уровню белого» видеосигнала (рис. 5b).

Рис. 5 Яркостные уровни белой и черной полосы

Но с уменьшением амплитуды белой полосы пропорционально уменьшаются уровни и всех остальных градаций яркости. В результате вместо шести градаций с равномерным изменением яркости на экране мы получаем три градации, причем большая часть экрана становится черной (рис. 5с). Такой случай характерен при работе камеры в высококонтрастных сюжетах, когда объект наблюдения, находящийся на переднем плане, представляет темное пятно, а фон – это ярко освещенный задний план.

Частично исправить такую ситуацию может регулятор «ALC». Вращая его, мы заставляем автоматическую диафрагму объектива «не обращать внимания» на яркий участок в кадре и даже допустить пересвечивание экрана в этом месте. Зато, манипулируя регуляторами «Level» и «ALC», нам удастся сохранить большую часть исходных градаций яркости

Когда освещенность на объекте изменяется одинаково для всех градаций яркости, то автоматическая диафрагма отрабатывает их, и мы на мониторе не замечаем никаких изменений.

Однако стоит отметить, что отверстие диафрагмы начинает изменять свое значение в зависимости от того, как настроен регулятор ALC. Если регулятор установлен в положение «А», то диафрагма начнет изменять свое значение только в том случаи, когда освещенность изменится на большей части кадра (обычно половина кадра).

Если регулятор ALС установлен в положении «Р», то диафрагма отслеживает изменение освещенности вплоть до пиксела.

Разрешающая способность

Разрешающая способность объектива – это основной параметр, характеризующий способность оптической системы давать раздельные изображения очень мелких, близко расположенных деталей изображаемых предметов. Разрешающая способность количественно равна максимальному числу штрихов (линий), приходящихся на 1 мм оптического изображения и видимого в этом изображении раздельно. Разрешающая способность объектива измеряется в линиях на 1 мм (lpm) или в паре линий на 1 мм (lp/mm), она всегда больше в центральной части изображения и меньше на его краях. Падение разрешения на краях изображения вызывается наличием у объектива аберраций, значение которых на краях всегда больше, чем в центре. Аберрация (сферическая и хроматическая) – это недостаток объектива, заключающийся в том, что световые лучи, прошедшие через объектив, не собираются в одну точку (фокус), а создают крупный расплывшийся (нерезкий) кружок (рис. 6).

Рис. 6 Влияние аберраций на разрешающую способность

Причина, вызывающая такой эффект, заключается в том, что лучи света с разной длиной волны (разный цвет) преломляются в линзах объектива под разными углами. В результате, вместо того чтобы собраться в единственной точке (фокус), каждый из них проходит через свою точку фокуса, тем самым, создавая на ПЗС нерезкий, расплывчатый кружок. Но даже если убрать все виды аберрации, разрешающая способность все равно не сможет достичь своего максимального значения. Причиной этого будет дифракция. Дифракция в объективе происходит при малых отверстиях диафрагмы, начиная с относительного отверстия 1:8, 1:11. В этом случае лучи света проходят близко к ребрам диафрагмы, огибают их, создавая дифракционные кольца или полосы. Это вызывает уменьшение контрастности и разрешающей способности изображения. Дифракция на самом деле зависит не только от диаметра отверстия диафрагмы, но и от других факторов, на которых мы не будем заострять наше внимание.

Объектив, являясь первым элементом в системе охранного телевидения, будет определять разрешающую способность всего видеотракта. Поэтому, выбирая видеокамеру, целесообразно определить, какое разрешение должен иметь объектив и имеется ли возможность его приобретения.

Требуемое разрешение объектива можно ориентировочно определить по следующей формуле:

Q = N / (1,5 * L),

где: Q – разрешающая способность объектива (lp/mm),

N – разрешающая способность видеокамеры (твл),

L – ширина ПЗС-матрицы (мм).

На основании этой формулы построен график (рис. 7), который поможет определить минимально допустимое разрешение объектива для любого формата ПЗС-матрицы видеокамеры с известным разрешением в твл.

Рис. 7 График, определяющий допустимое разрешение объектива для любого формата ПЗС-матрицы видеокамеры с известным разрешением в твл

Контраст и функция передачи модуляции

Контраст (от французского contraste – противоположность) – отношение разности яркостей объекта и фона, нормированного к максимальному значению. Величина контраста изменяется в диапазоне от ноля до единицы.

Почему контраст является основным критерием при тестировании видеооборудования и объективов? Прежде всего, потому, что изображение на мониторе должно соответствовать оригиналу, то есть объекту наблюдения. Это значит, что все полутона объекта от белого цвета до черного должны передаваться на устройства отображения без искажений. Но в реальной действительности этого не происходит.

Каждый элемент в видеотракте искажает полутона, что приводит к снижению контраста. Степень вносимых искажений в полутона в большой степени зависит от пространственных размеров элементов изображения. Чем меньше пространственные размеры, тем сильней проявляются искажения полутонов. В конечном итоге контраст снижается до такой степени, что различить два рядом расположенных цвета становится невозможно. Отсюда следует, что чем больше оборудование сохраняет исходный контраст объекта, тем большим количеством полутонов «прорисовывается» изображение на мониторе.

При тестировании объектива на предмет того, как он ухудшает контраст, определяют коэффициент передачи модуляции. Для этой цели используют специальную миру (рис. 8), состоящую из чередующихся белых и черных полос. Количество линий на 1 мм может быть разным. Миры могут быть в виде тестовых таблиц на бумажных носителях или в виде светового изображения, создаваемого специальными приборами.

Рис. 8 Определение коэффициента передачи модуляции

Традиционно миры для испытания объективов имеют 10, 20 и 40 lp/mm при модуляции, равной единице. В объективах модуляцию оценивают в виде ее уменьшения от центра объектива к периферии.

Напомню, что в оптике одна линия состоит из двух линий (черной и белой) и обозначается lp/mm. Если приведено обозначение lpm, то в этом случае черная и белая линии считаются как две.

При тестировании миры могут размещаться перед испытуемым устройством по-разному (рис. 9). Если мира размещена вдоль радиуса-вектора (1), то такое расположение миры называется тангенциальным, или меридианным. Если мира размещена перпендикулярно (2), то расположение называется радиальным, или сагиттальным.

Рис. 9 Тестирование миры

На сегодняшний день наиболее информативно оценить и сравнить оптическое качество объективов можно при помощи MTF-характеристики (Modular Transfer Function). В России она называется функцией передачи модуляции (ФПМ). ФПМ для оценки изображения в нашей стране начала применяться более 40 лет назад. Этот термин часто используется и в настоящее время. Сам термин ФПМ был впервые принят в СССР и законодательно утвержден в ГОСТ 2653–80.

Пожалуй, лучше всего объяснить значение ФПМ на примере обыкновенного усилителя низкой частоты, предназначенного для усиления музыкальных произведений.

Любой усилитель низкой частоты имеет в качестве характеристики АЧХ (амплитудно-частотная характеристика), которая на высоких частотах имеет естественных завал. Что это для меломанов значит? А значит следующее: если на вход усилителя пришла высокочастотная составляющая спектра, с каким то уровнем, то меломан хочет слышать эту частотную составляющую в таком же соотношении уровней к другим составляющим спектра, которые поданы на вход усилителя.

Но тракт усилителя этот уровень высокочастотной составляющей исказил в смысле того, что значительно уменьшил уровень сигнала на этой частоте.

Какой результат: меломан слушает не ту гармонию звуков, которая является первородной. Он слышит гармонию звуков с уровнями, которые создал усилитель в строгом соответствии со своей АЧХ.

В результате АЧХ это характеристика усилителя и она не имеет ни какого отношения, к тому, что происходит с сигналом до того момента, когда он попал на вход усилителя.

Функция передачи модуляции это то же самое, что и АЧХ. Она может быть для всего видеотракта или для любого элемента в нем.

Но, так же как и АЧХ ФПМ показывает, как ухудшает видеотракт исходный контраст сюжета, который попадает в поле зрения объектива (поскольку он первый элемент видеотракта).

На высоких разрешениях или когда элементы изображения в сюжете маленькие видеотракт в соответствии со своей ФПМ ухудшает их контраст. Точно также как и АЧХ.

То есть если в сюжете полоски на белой рубашке черные, то на мониторе они будут светло серые. А если рубашка не белая, то полосок на мониторе мы можем и не увидеть. (Если не видим полосок, то описывая объект мы даем не достоверную информацию об элементах его одежды.)

Отсюда следует очень неприятный для CCTV вывод: Поскольку объекты в сюжете перед видеокамерой имеют широкий диапазон полутонов или градаций яркости, то при завале ФПМ на высоких пространственных частотах мы на мониторах теряем очень много информации о деталях объектов и вообще о сюжете.

Примечание автора . К сожалению, до настоящего времени в CCTV модуляциею часто путают с контрастом. Поэтому в литературе по CCTV можно встретить самые разные варианты записи контраста: например, такие как 700 или 700:1. Другие авторы приводят контраст в виде 10%, утверждая, что это слабое различие между двумя градациями яркости. Можно встретить и запись в виде 0,01 и утверждение, что это очень высокий контраст. Во всем этом многообразии правильных и неправильных вариантов самым неприятным является то, что невозможно сравнить результаты разных авторов, которые рассматривают одно и то же устройство. Единственный путь исключения такой неоднозначности заключается в том, чтобы параметр «контраст» или «модуляция» были величиной не абсолютной, а относительной, нормируемой к максимальному уровню. В своих работах контраст и модуляцию мы определяем как:

Эти формулы контраста и модуляции приведены во всех классических изданиях по оптике и смежным с ней наукам.

В чем же отличие модуляции от контраста, а следовательно и ФПМ от ЧКХ? (ФПМ – функция передачи модуляции. ЧКХ – частотно-контрастная характеристика)

ФПМ и ЧКХ это абсолютно разные вещи с точки зрения физического смысла. ФПМ это модуляция, а это значит изменение параметра (контраста) относительно среднего значения. Для примера: стоит человек на фоне стены дома. Казалось бы, что нас интересует, как контрастирует человек на фоне стены, а ФПМ нам покажет, как контрастирует человек не на фоне стены, а на среднем значении яркостей между стеной и человеком. В системах видеонаблюдения нас интересует контраст объекта относительно фона. Поэтому в CCTV нужно использовать характеристику, показывающую зависимость контраста, а не модуляции. Такой характеристикой является ЧКХ.

Но между контрастом и модуляцией существует строгая взаимосвязь, которая позволяет находить один параметр через другой.

В дальнейшем, при изложении материала мы будем использовать ФПМ, как наиболее известный читателям параметр.

Смысл тестирования оптики при измерении ФПМ заключается в определении степени падения модуляции изображения, создаваемого объективом, в сравнении с оригиналом (тест таблицей). Если объектив очень хороший, то изображение мало чем отличается от оригинала и по четкости, и по контрасту, а значит, значение ФПМ такого объектива всегда будет близким к 1 (или к 100%, что одно и то же). При снижении модуляции изображение будет выглядеть более размытым, то есть потеряет резкость. На графиках ФПМ отображается зависимость уменьшение модуляции изображения на разном удалении от центра объектива при максимально открытой диафрагме. В оптике принято классифицировать объективы по их ФПМ следующим образом:

1) ФПМ укладывается в диапазон от 70% до 100% – хороший объектив;

2) ФПМ падает до 30% – удовлетворительный объектив;

3) ФПМ ниже 30% – плохой объектив.

Рассмотрим ФПМ (рис. 10) двух объективов . Первый объектив (кривая 1) имеет хорошее значение модуляции в центральной части объектива. Но к краям качество изображения (модуляция) довольно сильно падает.

Рис. 10 ФПМ двух объектов

Второй объектив (кривая 2) уступает первому в центре. Разница в модуляции составляет до 15%. Но зато изображение, формируемое этим объективом, одинаково по всей площади объектива. Кривая ФПМ в данном случае несколько неравномерна, однако неравномерность невелика.

Какой же объектив лучше? Однозначного ответа нет. Наверно, все зависит от поставленной этому объективу задачи, но одно ясно, что дальность обнаружения объекта для объектива с номером 2 на периферийной части кадра значительно выше, так как контраст объекта относительно фона больше.

Если основная задача камеры с этим объективом обеспечить наилучшие возможности оператору или цифровой системе видеонаблюдения по обнаружению объекта, то второй объектив предпочтительнее.

Такие графики сегодня рассчитываются для всех разрабатываемых объективов, но далеко не все производители считают нужным показать их потенциальному покупателю.

Рассмотрим ФПМ характеристики объектива, который фирма «Schneider» выставляет на своем сайте. Кому интересно более подробно ознакомиться, какая информация должна предоставляться пользователю, может зайти на сайт http://www.schneideroptics.com/photography/digital_photography/digitar/47/page5.php. Подборку ФПМ для фотографических объективов разных фирм можно найти на сайте http://www.riddle.ru/?page=articles/lens.

На рис. 11 представлена ФПМ характеристика объектива с диафрагмой 5,6 и пространственной частотой линий 10, 20 и 40 lp/mm. Какую информацию владелец такого объектива может вынести из этих графиков?

Рис. 11 ФПМ объектива

1. Модуляция изображения даже в центральной части объектива не доходит до 100%, а при увеличении пространственной частоты линий до 40 lp/mm опускается до 70%.

2. Модуляция изображения на периферийной части объектива значительно ухудшается, и в большей степени – при работе объектива с мелкими элементами объекта.

Чем ближе изображение к периферийной области объектива, тем искажения становятся все более значительными. А в случаях, когда речь идет о реальном изображении, контраст которого значительно меньше, чем на мире, то на периферии объектива они сольются в один тон, а это значит, что будет потеряна очень важная информация о деталях объекта.

К сожалению, все эти характеристики можно найти только для фотографических объективов. Для объективов, используемых в CCTV, найти такие характеристики, может быть, и можно, но мне не удалось. Я имею в виду характеристики объективов для CCTV от их производителей.

В фотографии у фотокамеры, кроме объектива и фотопленки, нет никаких элементов, снижающих качество изображения. И размерность разрешения в линиях на миллиметр, как объектива, так и фотопленки устраивает фотографов. В CCTV объектив не единственный элемент, который влияет на разрешающую способность всего видеотракта. Видеокамера, устройства обработки видеосигнала, монитор, да и радиочастотный кабель, так же как и объектив, имеют свою разрешающую способность. Но разрешающая способность видеооборудования в основном оценивается в телевизионных линиях (твл). Объектив в этом смысле выпадает из устоявшейся в телевидении размерности оценивать разрешающую способность оборудования в твл. Такое положение создает существенные трудности при проектировании видеотрактов. Поэтому мы в своей работе разрешение объектива определяем традиционно в телевизионных линиях. Придерживаясь такого подхода, графики ФПМ объективов, которые будем рассматривать ниже, построены как зависимость модуляции от количества телевизионных линий.

Для построения таких ФПМ используют миры с переменной пространственной частотой следования белых и черных полос (рис. 12).

Рис. 12 Миры с переменной пространственной частотой следования белых и черных полос

На рис. 13 представлены ФПМ характеристики в центральной области объективов двух известных фирм.

Рис. 13 ФПМ характеристики в центральной области объективов двух известных фирм

Исходя из классификации объективов, приведенных выше, ФПМ на уровне 30% является предельным значением, когда объектив целесообразно использовать. Для объективов, характеристики которых представлены на рис. 13, уровень 30% ФПМ соответствует предельному разрешению видеокамер 420–470 твл, то есть работа таких камер с этими объективами возможна.

Для камер с большим разрешением это плохие объективы, и использовать их нежелательно.

Но обратите внимание, что один объектив передает модуляцию на низких значениях твл чуть более 60%, в то время как у второго она близка к 100%. Поэтому объектив с ФПМ, близкой к 100%, значительно лучше будет прорисовывать изображение с максимальным количеством градаций яркости, полутонов.

Для того чтобы сравнить объективы, не прибегая к анализу их ФПМ, используют параметр «четкость» или реальная разрешающая способность. Четкость объектива соответствует количеству телевизионных линий на уровне ФПМ = 0,5 и записывается следующим образом:

ФПМ(0,5) = 180 твл – верхний график,

ФПМ(0,5) = 360 твл – нижний график.

Имея характеристику «четкость» объектива, не составит труда сравнить объективы и выбрать тот, характеристики которого лучше.

Чем выше значение «четкость», тем лучше объектив.

Снижение модуляции до уровней 0,07–0,1, соответствует предельной разрешающей способности объектива. Для верхнего графика предельное разрешение составляет 660 твл, а для нижнего – всего 480 твл. И, несмотря на то, что предельное разрешение у второго объектива меньше, чем у первого, для камер с разрешением 420–470 твл этот объектив значительно лучше. И его достоинство заключается только в том, что модуляция объектива близка к 1, в отличие от первого, где она чуть больше 0,6 и четкость на уровне ФПМ(0,5) = 360 твл. Этот момент очень важен, потому что высокая предельная разрешающая способность не всегда соответствует такому же высокому качеству формируемого изображения .

Теперь немного о том, как интерпретировать графики ФПМ.

1. Если значения ФПМ близки к 100%, то изображение будет исключительно резким и контрастным.

2. Качества объективов, имеющих ФПМ на уровне 70–80% и выше, вполне достаточно для профессионального уровня. Ну а объектив, чей график ФПМ опускается ниже 30%-ной отметки, лучше не приобретать.

3. Высокие значения ФПМ, полученные на участке миры с частым следованием полос (высокие значения твл), говорят о том, что даже при выводе изображения на мониторы с большей диагональю оно будет резким, с хорошей проработкой мелких деталей.

4. Близкие к 100% показатели ФПМ для миры с редким следованием полос (до 100 твл) свидетельствуют о высокой контрастности объектива, а следовательно, и получаемого с помощью его изображения.

5. Если при хороших показателях ФПМ с редким следованием полос график с частым следованием полос лежит в области низких значений твл, то исследуемый объектив при хорошем контрасте имеет проблемы с резкостью изображения, что будет особенно заметно при больших диагоналях мониторов.

6. Если высокие значения ФПМ объектив показывает не только в центре изображения, но и на периферии, то резкость такого объектива будет хороша на значительной площади кадра и при больших диагоналях мониторов.

7. Чем ближе друг от друга проходят графики ФПМ для сагиттальной и тангенциальной ориентаций миры, тем лучше у этого объектива исправлен астигматизм, а следовательно, более естественным и «мягким» будет размытие изображения в зоне нерезкости.

8. Ну и, наконец, сравнивая графики ФПМ объектива при максимальном относительном отверстии и задиафрагмированного до f/8 – f/11, можно сделать вывод о том, насколько уменьшение отверстия диафрагмы повышает разрешающую способность.

Падение контраста в объективе при его эксплуатации может быть и по причине боковой засветки передней линзы объектива.

Чтобы использовать возможности объектива на все 100 процентов, необходимо создать такие условия его работы, при которых он в состоянии реализовать свои лучшие характеристики. Для этого надо выбирать диапазон работы диафрагмы, где аберрация и дифракция проявляются не так явно. Следить за тем, чтобы лучи света, идущие с боков, не засвечивали поверхность передней линзы, а если видеокамера установлена в помещении с большим количеством осветительных приборов, применять козырек гермобокса или бленды. Ну и, конечно, использовать режим автоматического затвора с продуманной подсветкой сектора наблюдения в вечернее и ночное время.

В ходе изложения материала этого параграфа употреблялись термины: резкость, четкость и размытость. Для однозначного понимания того, что под этим подразумевается, приведу формулировки этих понятий.

Резкость – характеристика изображения, определяющая ширину переходной области, при яркостном перепаде от черного к белому. Чем эта область шире, тем резкость хуже. Резкость определяют по переходной характеристике или иногда ее называют пограничной кривой. Подробно это будет рассмотрено в разделе «3.3. Переходная характеристика».

Четкость:

Характеристика, используемая для сравнения оборудования по реальной разрешающей способности.

Размытость – характеристика изображения, определяющая яркостной переход как широкую расплывчатую зону с не оформленными границами. Подробно это будет рассмотрено в разделе «3.3. Переходная характеристика».

Фокусное расстояние

Объективы по фокусному расстоянию подразделяются на:

– объективы с постоянным фокусным расстоянием;

– объективы с фокусным расстоянием, изменяемым вручную, – «вариообъектив»;

– объективы с фокусным расстоянием, изменяемым дистанционно с помощью пульта управления, – «трансфокатор».

Фокусное расстояние в охранном телевидении является основным параметром, с помощью которого пользователь может выбирать необходимые участки сцены для вывода изображения на монитор. Фокусное расстояние имеет прямую связь с углом зрения объектива. Чем больше фокусное расстояние объектива, тем уже угол его зрения, и наоборот, чем короче фокусное расстояние, тем больше угол зрения.

В практической деятельности объективы по углу зрения делят на следующие группы в соответствии с таблицей 2.

Таблица 2 Угол зрения объективов

Определить углы зрения камер и расстояния, на которых оператор может обнаружить, различить и идентифицировать человека, приведены в таблицах Приложения.

Обращаю внимание читателей на то, что расстояния, приведенные в этих таблицах, соответствуют контрасту объекта наблюдения относительно фона (7–8%). Чем выше контраст, тем с более дальних расстояний оператор способен обнаружить объект. При низком контрасте объект может быть непосредственно перед камерой, но в связи с тем, что он слился с фоном, обнаружить его очень трудно. Предельный контраст, при котором оператор уже не в состоянии отличить объект от фона, составляет величину около 2% . Контраст выше 15% для оператора не вызывает никаких проблем в обнаружении и идентификации объекта.

Понятия «обнаружить», «различить» и «идентифицировать» объект приведены в Р 78.36.008–99 и означают следующее:

обнаружить – выделение объекта контроля из фона либо раздельное восприятие двух объектов контроля, расположенных на расстоянии друг от друга, соизмеримом с их размерами;

различить – раздельное восприятие двух объектов контроля, расположенных рядом, либо выделение деталей объекта контроля;

идентифицировать – выделение и классификация существенных признаков объекта контроля либо установление соответствия изображения объекта контроля, хранящегося в базе данных.

Но в практической деятельности необходимо знать расстояния, на которых оператор или техническое устройство способно обнаружить, различить и идентифицировать объект.

Расстояние обнаружения – это такое расстояние от видеокамеры до объекта, при котором по изображению на мониторе оператор способен обнаружить появившийся объект среди других элементов изображения.

Расстояние различимости – это такое расстояние от видеокамеры до объекта, при котором по изображению на мониторе оператор может идентифицировать:

– элементы одежды объекта;

– комплекцию объекта;

– походку;

– наличие предметов в руках.

Расстояние идентификации – это такое расстояние от видеокамеры до объекта, при котором по изображению на мониторе оператор способен описать черты лица незнакомого человека, а распечатанная фотография позволит сотрудникам ОРД организовать его поиск.

F-число объектива

F-число объектива указано на корпусе любого объектива в виде F1.3. Этот параметр не что иное, как диафрагменное число. (Диафрагменные числа характеризуют величину отверстия диафрагмы.)

F-число – это значение диафрагменного числа, при котором диафрагма полностью открыта. Отметим, что чем больше диафрагменное число, тем меньше света попадает на ПЗС-матрицу. Часто объективы с низким F-числом называют светосильными объективами или быстрыми объективами (faster lens). Это связано с тем, что на заре фотографии сократить время экспозиции пленки пытались путем увеличения количества света (низкое F-число), проходящего через объектив.

Шкала диафрагменных чисел разработана таким образом, чтобы освещенность при переходе к соседним значениям изменялась в два раза. Эту разницу между соседними делениями шкалы диафрагмы называют ступенями или F-stop.

Какой же объектив лучше выбрать: с F1.3 или F1.4, – если остальные параметры одинаковы? Однозначного ответа, наверно, не существует.

Поскольку разница между объективами при таком сравнении проявляется при слабой освещенности, то посмотрим на поведение объективов в этих условиях.

1. Аберрация у F1.4 меньше; значит, при слабой освещенности разрешение будет больше.

2. Если освещенность совсем низкая, то и F1.3 не поможет – нужна искусственная подсветка.

3. При плохой освещенности контраст интересующих службу безопасности объектов относительно темного фона будет очень маленький, следовательно, нужен объектив с лучшим разрешением, а это F1.4.

Исходя из вышеизложенного, я бы выбрал объектив с F1.4.

Значение, обратное F-числу, называется относительным отверстием.

Относительное отверстие

Относительное отверстие это отношение диаметра отверстия диафрагмы к его фокусному расстоянию.

Иногда вместо F-числа на объективах указывается величина относительного отверстия, которое записывается как 1: 1.3.

Относительное отверстие объектива уменьшают ирисовой диафрагмой, позволяющей плавно менять её величину. На оправу объективов (в основном, фотографических) нанесена шкала из знаменателей относительных отверстий (диафрагменные числа), соответствующих различному значению отверстия диафрагмы. Перевод ирисовой диафрагмы на одно деление изменяет относительное отверстие в 1,4 раза, что дает увеличение или уменьшение освещенности оптического изображения в два раза, за исключением первых двух чисел ирисовой диафрагмы, у которых такого изменения может и не быть .

По величине относительного отверстия объективы делятся на:

сверхсветосильные от 1: 0,7 до 1: 2;

светосильные от 1: 2,8 до 1: 4,5;

малосветосильные от 1: 5,6 до 1: 16.

Крепление объектива

Вид крепления объектива (Lens Mount) – «C» или «CS» – определяет конструктивную совместимость видеокамеры и объектива.

Дело в том, что существует два варианта исполнения видеокамер, которые отличаются расстоянием от места расположения ПЗС-матрицы до задней линзы объектива. Варианты «C» и «CS» отличаются по этому расстоянию на 5 мм. В соответствии с этим выпускаются и объективы с «C» и «CS» креплением. Чтобы изображение было четко сфокусировано на ПЗС-матрице, необходимо, чтобы с видеокамерой «C» эксплуатировался объектив «C», а с видеокамерой «CS» – объектив «CS». Возможен единственный вариант смешанного соединения, который приведен на рис. 14, когда с видеокамерой «CS» может использоваться объектив «C», но при условии, что между объективом и видеокамерой установлено специальное переходное кольцо С/CS (C/CS adapter) рис. 15.

Рис. 14 Вариант смешанного соединения (видеокамера «CS» используется с объективом «C»)

При установке объектива с «CS»-креплением на видеокамеру, рассчитанную на «C»-крепление, изображение оказывается сфокусированным перед плоскостью ПЗС-матрицы, а на самой ПЗС-матрице изображение будет расфокусировано (рис. 14), что, естественно, недопустимо, и исправить такую ситуацию невозможно.

При использовании объектива с «C»-креплением и видеокамеры с «CS»-креплением изображение оказывается сфокусированным за плоскостью ПЗС-матрицы, что также недопустимо. Однако при установке C/CS-кольца (рис. 15) между объективом и видеокамерой изображение оказывается сфокусированным как раз в плоскости ПЗС-матрицы.

Рис. 15 C/CS-кольцо между объективом и видеокамерой

Некоторые видеокамеры имеют встроенное резьбовое кольцо с большим ходом, что позволяет отказаться от использования CS-кольца и гарантирует хорошую фокусировку при настройке обратного фокуса.

Настройки и регулировки объектива

Настройки объектива можно разделить на две группы: первая относится к настройкам, обеспечивающим нормальную работу объектива в заданных условиях освещенности, а другая группа настроек определяет степень деталировки и глубину резкости передаваемого изображения.

К настройкам объектива первой группы можно отнести:

1) настройку обратного фокуса,

2) настройку «ALC» и «Level».

К настройкам объектива второй группы относятся:

1) выбор глубины резко изображаемого пространства,

2) выбор расстояния наводки на резкость.

Настройка обратного фокуса

Настройку обратного фокуса необходимо проводить в любом случае, производится ли замена объектива на видеокамере или устанавливается новый объектив. Причем алгоритмы настроек у объективов с постоянным фокусным расстоянием и объективов с переменным фокусным расстоянием (трансфокаторов) значительно отличаются.

На практике неправильная установка объектива выражается в том, что в дневное время суток изображение от камер не вызывает нареканий, а с наступлением темноты изображение может стать нерезким или пропасть совсем. Этот эффект называется неправильной установкой «обратного фокуса» и возникает в связи с тем, что глубина резкости объектива, которую мы обычно воспринимаем при рассматривании объекта перед камерой, распространяется и на область за объективом, в которой ПЗС-кристалл выпадает из области резкого изображения . Настройка этого параметра определяет положение задней линзы объектива относительно ПЗС-матрицы камеры.

Для настройки «обратного фокуса» объективов с постоянным фокусным расстоянием необходимо проделать следующее.

4. Ослабить фиксатор, удерживающий посадочное место объектива в видеокамере.

5. Используя график рис. 16, определить расстояние от камеры до объекта фокусировки. Например, если у нас объектив 4 мм, то это расстояние равно 12 м.

Рис. 16 График, для настройки «обратного фокуса».

6. На удалении 12 м от видеокамеры найти объект, по которому будет производиться наводка на резкость.

7. Вращая объектив с посадочным местом, добиться резкого изображения найденного объекта.

8. Зафиксировать посадочное место объектива. Настройка закончена.

Для трансфокаторов настройка обратного фокуса значительно сложнее. Вся сложность регулировки таких объективов заключается в том, что необходимо добиться резкого изображения во всем диапазоне изменения фокусного расстояния.

Для настройки «обратного фокуса» трансфокаторов необходимо проделать следующее.

1. Установить объектив в посадочное место видеокамеры.

2. Полностью открыть диафрагму объектива (установить нейтральный светофильтр нужной плотности).

3. Установить движок расстояний на объективе в положение «бесконечность».

4. Установить максимальное значение фокусного расстояния (допустим, 50 мм).

5. Ослабить фиксатор, удерживающий посадочное место объектива в видеокамере.

6. Используя график рис. 16, определить расстояние фокусировки объектива (170 м).

7. На удалении фокусировки объектива (170 м) найти объект, по которому будет производиться наводка на резкость.

8. Вращая объектив с посадочным местом, добиться резкого изображения найденного объекта.

9. Установить минимальное значение фокусного расстояния (5 мм).

10. Используя график рис. 16, определить расстояние фокусировки объектива (17 м).

11. На удалении фокусировки объектива (17 м) найти объект, по которому будет производиться оценка резкости объекта.

12. Если резкость объекта вас устраивает, то настройка закончена, если нет, то читайте дальше.

13. Установите снова максимальное значение фокусного расстояния.

14. Вернитесь к пункту 8. Поскольку положение объектива, когда объект резкий, это целый сектор, а не одно положение, то выберите положение «резко» рядом с предыдущим значением.

16. Зафиксировать посадочное место объектива. Настройка закончена.

Отдельно остановлюсь на способах настройки для объективов, которые работают с камерами, имеющими режим автоматического электронного затвора.

– У объективов с ручной диафрагмой на видеокамере нужно включить автоматический электронный затвор и полностью открыть диафрагму.

– У объективов с автоматической диафрагмой на видеокамере нужно включить автоматический электронный затвор, а диафрагму открыть подачей напряжения на соответствующие контакты автоириса.

Никакие нейтральные светофильтры в этих случаях не нужны.

Настройка ALC

Регуляторы «ALC» и «Level» предназначены для получения нормального изображения в высококонтрастных сюжетах, когда объект наблюдения находится на переднем плане, а задний план сильно освещен. Объект наблюдения в этом случае будет представлять собой темный силуэт (рис. 17).

Рис. 17 Высококонтрастные сюжеты при использовании регуляторов «ALC» и «Level»

Попробуем «объяснить» объективу, что в кадре рис. 17 является важной информацией (человек), а что второстепенной. Для этого выполним последовательность следующих действий.

1. Установим регулятор «ALC» в положение «P» (пиковые значения). При этом задний план изображения на экране должен стать пересвеченным, а объект на переднем плане еще темнее.

2. Регулятором «Level» увеличим яркость объекта на переднем плане.

3. Регулятор «ALC» будем вращать в направлении положения «А» (средних значений) до момента, когда яркость пересвеченного заднего плана уменьшится.

4. Повторяем пункты 2–3 до тех пор, пока изображение на переднем плане не будет передавать максимальное количество градаций яркости.

Существует еще одна ситуация, в которой регулировки «ALC» и «Level» могут нам помочь. Это защита объектива от мощных точечных источников света (фары автомобилей). Вот некоторые рекомендации по такой настройке, приведенные в .

1. Установите регулятор «ALC» в положение «P» (пиковые значения). При этом задний план изображения на экране должен стать пересвеченным, а объект на переднем плане еще темнее.

2. Введите в поле зрения ТВ-камеры светящийся объект (лампочку, фонарик, светодиод и пр.) и, перемещая его вдоль оси поля зрения камеры, добейтесь размеров объекта на мониторе (3–5)% от высоты растра (абсолютно не важно, если объект при этом окажется не в фокусе). Медленно поворачивая потенциометр «ALC» в направлении «A», остановитесь на моменте начала ограничения по «белому» видеосигнала от светящегося объекта. При такой регулировке преднамеренное направление света от точечного источника в ТВ-камеру не приведет ее к ослеплению, а на объектах больших по размерам будут просматриваться детали, что весьма важно в процессах обнаружения и различимости.

3. Уберите светящийся объект из поля зрения камеры и при выбранном положении потенциометра «ALC» окончательно выставьте уровень видеосигнала 1 вольт; не забудьте при этом, что выход видеосигнала ТВ-камеры должен иметь нагрузку 75 ом.

Примечание автора . К сожалению, некоторые недобросовестные поставщики предлагают объективы, у которых регулировки «Level» и «ALC» не работают при нормально функционирующей автоматической диафрагме, отрегулированной в заводских условиях.

Настройка «Level»

Настройка регулятора «Level» в основном не требуется, так как заводская установка, как правило, удовлетворяет пользователей. Но, несмотря на это, в практической деятельности иногда приходится проводить такую регулировку. Порядок настройки следующий.

1. Вращая регулятор «Level», проверьте, что яркость картинки на мониторе изменяется.

2. Установите регулятор в такое положение, при котором картинка станет пересвеченной.

3. Вращая регулятор в направлении уменьшения яркости экрана, найдите такое положение, при котором картинка из пересвеченной станет нормальной.

4. Относительно этого положения поверните регулятор в том же направлении на 1/4–1/5 оборота.

После такой настройки, какой бы ни была освещенность на объекте, диафрагма займет положение, при котором освещенность на ПЗС-матрице будет максимально допустимой.

Глубина резкости

Термин «глубина резкости» хорошо известен всем, кто хоть раз сталкивался с фотографией или посещал выставки профессиональных фотографов. Умело, используя глубину резкости, фотографы создают высокохудожественные снимки, выделяя главный сюжет и сглаживая все, что находится на втором плане. Такие возможности открылись перед фотографами с появлением на корпусе объектива шкалы с нанесенными на ней расстояниями глубины резкости. Для создания такой шкалы была создана методика расчета, использующая в качестве переменных расстояние наводки на резкость, диафрагменное число, фокусное расстояние объектива, а так же диаметр допустимого кружка рассеяния. Из перечисленных параметров только диаметр допустимого кружка рассеяния для нас является новым, но о нем немного позже.

В отличие от фотографических объективов, объективы, используемые в системах видеонаблюдения, не имеют шкалы глубины резкости. Объясняется это тем, что для объективов, имеющих автоматическую диафрагму, не существует постоянного значения глубины резкости. В таких объективах она меняется в зависимости от значения диафрагмы, которая определяется реальной освещенностью на объекте. Для объективов с ручной диафрагмой отсутствие шкалы глубины резкости можно объяснить, скорее всего, невостребованностью этого параметра потребителями систем охранного телевидения.

Глубиной резкости называется свойство объектива изображать в одной плоскости и практически с одинаковой резкостью предметы, удаленные от объектива на различные расстояния.

Рассмотрим, что такое глубина резкости при формирования изображения на ПЗС матрице видеокамеры. Назовем пространство перед объективом – «Предметное пространство», а пространство между объективом и видеокамерой – «Пространство изображений». Пусть у нас имеется три точечных источника изображения «B», «C» и «D» (рис. 18), находящихся на разном удалении от видеокамеры.

Рис. 18 Определение глубины резкости

Наведем резкость объектива на точку «В». Объектив сфокусирует ее в точке «В’» на ПЗС матрице. Монитор, подключенный к видеокамере, сформирует резкое изображение точечного источника. Точки «С» и «D», лежащие в других плоскостях так же сфокусируются в точках «С’» и «D’», а на ПЗС матрице создадут не точки, а кружки диаметром . Монитор тоже отобразит их на экране. В зависимости от того, на сколько точки «D» и «C» отстоят от точки наводки на резкость «B», кружки будут иметь разный диаметр. Из этих построений следует, что оптическая система, формируя изображение, не имеет ни какой глубины резкости. Резкими будут только те точки, которые лежат в плоскости наводки на резкость. Это подтверждает и основное уравнение линзы.

Но из практики мы хорошо знаем, что глубина резкости существует и более того ею можно управлять, выбирая нужный диапазон в зависимости от поставленных задач. Так чем же определяется глубина резкости и от чего она зависит? На самом деле глубина резкости это следствие ограниченных возможностей человеческого зрения. Если напечатать на листе бумаги кружки с разным диаметром но меньше 0,1мм и рассматривать их невооруженным глазом с расстояния наилучшего зрения (25см), то нам будет казаться, что все они одного размера. Другими словами человеческий глаз не в состоянии различить ни размеры кружка, ни тем более их содержание, если диаметр кружка равен или меньше 0,1мм.

Допустим, что отображаемый на мониторе кружок (рис.2.18), который передает изображение точек «C» или «D», имеет на мониторе такой размер, что глаз не в состоянии отличить его от точки «B». Тогда точки D’ и B’ сфокусированные рядом с ПЗС матрицей, на мониторе будут тоже резкими, потому, что мы видим их не как кружек, а как точку. Следовательно, и в предметном пространстве точки D, B и все предметы между ними будут резкими, а расстояние между плоскостями D и C будет называется глубиной резкости. Параметр «» в профессиональной терминологии называется кружком рассеяния. Наша задача состоит в том, чтобы связать размер кружка рассеяния с характеристиками человеческого зрения в зависимости от диагоналей мониторов и расстояний, с которых оператор анализирует изображение. В дальнейшем размер этого кружка будет использоваться для расчета глубины резкости и гиперфокального расстояния, а сам кружек будет называться допустимым кружком рассеяния.

Используя фотографическую методологию в обосновании диаметров допустимых кружков рассеяния, выберем размеры допустимых кружков рассеяния и для систем охранного телевидения.

Рис. 19 Определение минимального угла зрения

Из чего исходили классики в фотографии? Прежде всего, они выбрали критерий и, руководствуясь им, проводили все расчеты. Критерий самый банальный - это разрешающая способность человеческого глаза или свойство человеческого зрения видеть мелкие предметы на изображении. И действительно, человеческое зрение имеет конечные возможности, которые определяются минимальным углом α (рис. 19), под которым глаз способен различать мелкие детали на изображении. В зависимости от удаления предмета рассматривания, линейные размеры нечувствительности глаза увеличиваются. Для средне статистического человека глаз в состоянии различать мелкие детали с углом зрения не менее 0,017 градусов, что соответствует диаметру кружка рассеяния 0,074 мм на расстоянии рассматривания 25см. В то же время на расстоянии в один метр диаметр кружка будет уже 0,3 мм. Зная предельный угол зрения глаза и, задавшись расстоянием просмотра можно построить таблицу минимальных кружков рассеяния.

В фотографии размеры кружков рассеяния были определены как раз таким способом (Таблица 3).

Таблица 3 Размеры кружков рассеяния

Однако предельный угол зрения человек не всегда способен или хочет реализовать, тем более что у каждого человека зрение абсолютно индивидуально. Наверно поэтому, а может быть и из многолетнего опыта работы, размеры кружков рассеяния в фотографии приняли в 1,33 раза больше чем теоретически обоснованные. Такой размер кружков соответствует углу зрения глаза 0,023 градуса. В таблице 3 это столбец «Практический».

Нетрудно заметить, что самый маленький кружок рассеяния относится к негативу при минимальном расстоянии просмотра. И это вполне естественно, так как при увеличении негатива до размеров даже среднего формата фотографии, кружок рассеяния так же увеличится пропорционально выбранному масштабу и может превысить свое допустимое значение. В результате чего расчетная глубина резкости не будет соответствовать ее действительному значению. Хочется обратить внимание читателей, что в фотографии при обосновании параметра допустимого кружка рассеяния ни какие технические характеристики объективов, фотопленок или фотокамер не использовались.

Если подходить к выбору кружка рассеяния, для охранного телевидения используя опыт фотографии, то правильней было бы пересчитать размер кружка рассеяния на мониторе к его размеру на ПЗС матрице. Кружок рассеяния на мониторе можно выбрать, руководствуясь предельным разрешением человеческого зрения в зависимости от удаления оператора от монитора. Но однозначно определить с какого расстояния оператор будет смотреть на монитор, а тем более значение диагонали монитора предвидеть достаточно трудно. Тем не менее, удаление оператора от монитора, при проектировании рабочего места регламентируется медицинскими ограничениями (Таблица 4), которые составляют величину порядка 4-х диагоналей экрана.

Таблица 4 Медицинские ограничения удаления оператора от монитора при проектировании рабочего места.

Для детального изучения изображения оператор обычно смотреть на монитор с минимальных расстояний и использует для этих целей специальные просмотровые мониторы, имеющие увеличенную диагональ экрана. Но смотреть на монитор 21” с очень близкого расстояния не имеет смысла, так как оператор в этом случае видит не картинку, а структуру кинескопа. Поэтому для просмотровых мониторов существуют расстояния наилучшего просмотра картинки. Эти расстояния получены на основе свойства человеческого зрения, видеть изображение с высоким разрешением при минимальном зрительном напряжении. Это возможно только с расстояний, при которых угол зрения глаза находится в пределах 20 градусов. В таблице 4 эти расстояния сведены в столбец «Наилучший просмотр». На основании этих рассуждений получены значения кружков рассеяния (Таблица 4) для расстояний наилучшего просмотра (верхняя строка) и расстояний, нормируемых медицинскими ограничениями (нижняя строка). В расчетах использовался угол зрения глаза равный 0,017 градусов.

В качестве допустимых кружков рассеяния для различных форматов ПЗС матриц (Таблица 5) можно использовать усредненные значения по наилучшему просмотру.

Таблица 5 Кружки рассеяния для различных форматов ПЗС матриц

Диагональ монитора (дюйм)

Расстояние просматривания, (м)

Диаметр кружка рассеяния на ПЗС матрице, мкм

Формат кристалла матрицы

Усредненные значения по:

наилучшему просмотру

медицинским ограничениям

В связи с тем, что это расчетные значения, а практика, как правило, вносит свои коррективы, то вполне возможно, что кружки рассеяния могут быть большего размера, хотя бы как в фотографии в 1,33 раза.

Определив допустимые размеры кружков рассеяния можно попробовать рассчитать глубину резкости и гиперфокальные расстояния.

Найдем глубину резкости для видеокамеры с форматом матрицы 1/3”, диафрагменным числом 1,3 и фокусными расстояниями в диапазоне от 2,8 до 16мм. Сфокусируем объектив на условный предмет, расположенный на удалении от камеры 10 м.

Таблица 6 Зависимость фокусного расстояния объектива от глубины резкости

Резкость наводилась на объект, удаленный на 10м

Из результатов расчетов (таблица 6) видно как с увеличением фокусного расстояния объектива глубина резкости уменьшается, сходясь на расстоянии наводки на резкость 10м. Поскольку в нашем примере диафрагма полностью открыта, то эти данные справедливы для вечернего времени, когда освещенность мала или днем, но в том случае, когда используются видеокамеры с автоматическим затвором и бездиафрагменным объективом.

Таблица 7 Значения глубины резкости в зависимости от значения диафрагменного числа

В дневное время, когда диафрагма закрывается, глубина резкости значительно увеличивается. В таблице 7, для этих условий приведены значения глубины резкости при диафрагменном числе 8.

Объясним увеличение глубины резкости в зависимости от значения диафрагменного числа (Рис. 20).

Рис. 20 Зависимость глубины резкости от значения диафрагменного числа

Если диафрагма полностью открыта (Рис. 20а), то все лучи сходятся в фокусе на ПЗС матрице. Зная диаметр допустимого кружка рассеяния можно определить глубину резкости относительно плоскости ПЗС матрицы. Если мы закроем объектив диафрагмой (Рис. 20б), то лучи сойдутся в той же точке фокуса, но допустимый кружок рассеяния будет отстоять от плоскости ПЗС матрицы значительно дальше и как следствие глубина резкости будет больше.

Рис. 21 Зависимость глубины резкости в дневное и вечернее время от расстояния наводки на резкость объектива с автоматической диафрагмой

Рассмотрим пример, как изменится глубина резкости в дневное и вечернее время в зависимости от расстояния наводки на резкость объектива с автоматической диафрагмой. На рис. 21 изображена видеокамера, установленная на высоте 4м с форматом кристалла 1/3” и фокусным расстоянием объектива 8мм. Сектор, который способна видеть видеокамера простирается от 7,6м до 96м при угле ее наклона относительно горизонта 15 градусов. Предположим, что сектор наблюдения, интересующий службу безопасности, расположен от 8м до 50м. Наведем резкость объектива на расстояние 8 метров.

В вечернее время, когда диафрагма полностью открыта (диафрагменное число 1,3) резко изображаемое пространство на мониторе будет составлять величину от 4,8 до 24 метров.

Рис. 22 Зависимость глубины резкости в дневное и вечернее время от расстояния наводки на резкость с 8 метров на 20 метров

Это значит, что территория с 24 метров и до 50 в вечернее время суток будет выводиться на монитор нерезкой. С увеличением освещенности на объекте глубина резкости значительно увеличивается и, будет иметь значения от 2,0м и до бесконечности. Попробуем изменить расстояние наводки на резкость с 8 метров на 20 метров (Рис. 22). Глубина резкости в вечернее время существенно изменилась. Если разместить видеокамеру на удалении от объектов, которые должны быть под постоянным контролем, не ближе 7,5 метров мы получим результат, при котором и днем и вечером все охраняемое пространство будет резким.

Этот пример хорошо показывает насколько важно правильно выбрать расстояние наводки на резкость.

Оперативно проводить такую оценку можно, имея под рукой специализированный программный продукт или калькулятор с аналогичными возможностями. В настоящее время такие задачи может решать «Проектировщик CCTV», который доступен для приобретения на сайте http://www.lonacomputerservices.com/CCTV/CCTVrus.html

Хочу обратить внимание читателей, что все расстояния, о которых шла речь в этой статье, будут соответствовать действительности только при условии правильной настройке «обратного фокуса» объектива.

Знать значения допустимых кружков рассеяния необходимо для того, чтобы самому рассчитать глубину резкости или гиперфокальное расстояние объектива.

Значения диаметров допустимых кружков рассеяния в микронах приведены в таблице 8.

Таблица 8 Значения диаметров допустимых кружков рассеяния в микронах

Глубину резкости можно изменять, варьируя следующими параметрами:

– значение диафрагмы – чем больше диафрагменное число, тем больше глубина резкости;

– фокусное расстояние – чем больше фокусное расстояние вашего объектива, тем меньше глубина резкости при фиксированном расстоянии до объекта и значении диафрагмы. При увеличении фокусного расстояния область резкости уменьшается из-за увеличения масштаба изображения, что становится особенно заметно в случае с мощными телеобъективами;

– расстояние от камеры до точки фокусировки – чем ближе вы находитесь к объекту, тем меньше глубина резкости при одной и той же диафрагме и неизменном фокусном расстоянии объектива.

Выбор расстояний наводки на резкость

К настоящему времени существует всего три способа наводки на резкость, это фокусировка непосредственно на объект, фокусировка на «бесконечность» (режим гиперфокального расстояния) и фокусировка на гиперфокальное расстояние. Отличаются они не только диапазоном глубины резкости, но и тем, на каких расстояниях деталировка изображения будет максимальной или размытость – минимальной. Рассмотрим каждый способ отдельно.

Режим гиперфокального расстояния объектива

Для работы объектива в режиме гиперфокального расстояния регулятор расстояний нужно установить в положение «бесконечность».

Глубина резкости, которая получается при наводке объектива на «бесконечность», начинается от значения гиперфокального расстояния и простирается до бесконечности.

Гиперфокальные расстояния для разных фокусных расстояний объективов и формата ПЗС-матрицы 1/3" приведены в таблице 9. Чтобы понять, как планировать глубину резкости при использовании объективов с автоматической и ручной диафрагмой, приведем два примера.

Таблица 9 Гиперфокальные расстояния для разных фокусных расстояний объективов

1. Камера оснащена объективом с ручной диафрагмой и фокусным расстоянием 6 мм установлена в помещении с постоянным освещением. При установке движка расстояний на бесконечность, а диафрагмы на такое значение, при котором изображение на мониторе будет передавать все градации яркости рассматриваемых объектов (допустим, диафрагменное число 5,6), глубина резкости будет составлять величину от 1 метра и до бесконечности (рис. 23).

Рис. 23 Определение глубины резкости при режиме гиперфокального расстояния объектива

2. Камера установлена на улице, объектив с автоматической диафрагмой, F-число 1,3, фокусное расстояние 6 мм. При установке движка расстояний на бесконечность в вечернее время, когда значение диафрагменного числа равно 1,3, глубина резкости будет от 4 м до бесконечности, а в дневное время при диафрагменных числах 8–16 – менее 1 м и до бесконечности.

С точки зрения глубины резкости при настройке объектива на «бесконечность» мы разобрались.

Теперь оценим, на сколько хорошо проработаны мелкие детали изображении или другими словами, на сколько хорошо объектив передает деталировку изображения. Резкие изображения зачастую не передают структуру мелких деталей. Переходы между ними как будто размыты, что говорит о слабой деталировке изображения. Недостаточная деталировка приводит к неприятному ощущению дефокусировки, размытости изображения. Отображаемые на мониторе мелким и средним планом лица становятся неузнаваемыми, неразборчивыми.

Вот устранением этой размытости мы сейчас и займемся.

Деталировка изображения определяется диаметром кружка нерезкости (не путать с кружком рассеяния), которым объектив, как «световым пером», «рисует» изображение на ПЗС-матрице. Чем тоньше диаметр «светового пера», тем лучше мелкие детали изображения будут проработаны и тем выше деталировка изображения. Приведем график (рис. 24), на котором показано, как изменяется диаметр кружка нерезкости от расстояния при фокусировке объектива с фокусным расстоянием 6 мм на «бесконечность».

Рис. 24 График зависимости диаметра кружка нерезкости от расстояния при фокусировке объектива с фокусным расстоянием 6 мм на «бесконечность»

На графике видно, что чем дальше от камеры находится объект, тем более тонким лучом объектив прорисовывает изображение. В нашем случае, когда объектив настроен в режиме гиперфокального расстояния, ближняя граница зоны резкости совпадает с гиперфокальным расстоянием и составляет величину 4,33 метра. Чем дальше от видеокамеры расположен объект, тем меньше диаметр кружка нерезкости (лучше проработка мелких деталей). В системах охранного видеонаблюдения наиболее массово используются объективы с фокусными расстояниями до 6 мм. Для таких объективов гиперфокальные расстояния еще меньше, и ближняя граница зоны резкости еще сильнее приближается к видеокамере. Поэтому для таких объективов настройка их на режим гиперфокального расстояния очень удобна и вот почему:

1) отпадает необходимость проводить фокусировку объектива на объекте;

2) сокращается время на монтаж и настройку видеокамеры, а значит, сокращаются и сроки сдачи объекта заказчику.

В каких же случаях необходимо использовать настройку объектива на «бесконечность»?

1. Для объективов с фокусным расстоянием меньше 6 мм.

Фокусировка объектива на гиперфокальное расстояние. Для фокусировки объектива на гиперфокальное расстояние, прежде всего надо знать, чему оно равно. В таблице 8 приведены гиперфокальные расстояния для видеокамер с форматом ПЗС-матрицы 1/3". В нашем примере, рассмотренном выше, гиперфокальное расстояние для 6 мм объектива с F-числом 1,3 равно 4,33 м, при диаметре кружка рассеяния 6,4 микрона.

Если мы наведем резкость на гиперфокальное расстояние 4,33 м, то глубина резкости будет простираться от половины гиперфокального расстояния 2,17 м и до бесконечности (рис. 25).

Рис. 25 График фокусировки объектива на гиперфокальное расстояние

При такой фокусировке максимальная деталировка будет на гиперфокальном расстоянии. Очень быстро деталировка будет падать при приближении к передней границе глубины резкости, а при удалении от гиперфокального расстояния деталировка немного ухудшается, но, тем не менее, остается на достаточно хорошем уровне. Причем минимальное расстояние, на котором изображение будет еще резкое, равно половине гиперфокального расстояния.

Использовать такую настройку объектива нужно при необходимости:

– получить максимальную деталировку изображения, если объект наблюдения находится в пределах гиперфокального расстояния;

– получить максимальную глубину резкости для объективов с любым значением фокусных расстояний;

– при нахождении объекта наблюдения на удалении меньшем двух гиперфокальных расстояний.

Настройка непосредственно на объект наблюдения (рис. 26)

Такая ситуация в системах видеонаблюдения возникает достаточно редко. Связано это с тем, что объекты наблюдения в CCTV – это люди, машины и другие элементы изображения, которые находятся в постоянном движении. Или территории, которые должна контролировать видеокамера. Во всех этих случаях глубина резкости должна быть максимальной.

Рис. 26 график настройки непосредственно на объект наблюдения

Тем не менее нам известны случаи, когда объект наблюдения статичен. Это может быть слепок с печатями, которые контролирует видеокамера, пульт управления технологическим процессом, с которого камера считывает данные и т. д. и т. п. Фокусировка непосредственно на таких статических объектах наблюдения дает хорошие результаты. Кроме того, хочу обратить ваше внимание на три момента.

– Фокусировка объектива на объект наблюдения при ярком освещении практически невозможна. Резкость будет присутствовать во всем диапазоне расстояний.

– Использование нейтральных светофильтров не всегда возможно по самым разным причинам.

– Фокусировка объектива, уже смонтированного на объекте, отнимает достаточно много времени и требует определенных навыков от монтажников.

Примечание: Графики на рис. 2.24 – 2.26 построены для идеальных объективов, в которых отсутствуют искажения. В реальной действительности минимльный диаметр кружка нерезкости будет ограничиваться значениями аберационных и дифракционных искажений.

Термины и определения

Таблица 10Термины и определения

Термины

Размерность

Определения

Аберрация

Аберрация (сферическая и хроматическая) – недостаток оптической системы, заключающийся в том, что световые лучи, прошедшие через оптическую систему, не собираются в одну точку (фокус), а создают крупный расплывшийся (нерезкий) кружок.

Асферический объектив

Объектив, у которого значительно снижены аберрационные искажения. Разрешающая способность таких объективов выше.

Вариообъектив

кратность

Объектив, позволяющий изменять значение фокусного расстояния вручную.

Гиперфокальное расстояние

Минимальное расстояние от объектива, начиная с которого и до бесконечности все предметы резкие.

Глубина резкости

Диапазон расстояний, в пределах которого изображение будет резким.

Диафрагма

Непрозрачная преграда с отверстием, расположенная на пути светового потока.

Просветленная оптика

Объектив, у которого на линзы, соприкасающиеся с воздухом, нанесено специальное покрытие, уменьшающее отражение падающего света. Чем меньше отражение, тем больше света проходит через объектив.

Объектив

Оптическая система, предназначенная для формирования изображения на ПЗС-матрице.

Диафрагменное число

Определяет размер отверстия диафрагмы. Каждый объектив имеет целый ряд диафрагменных чисел.

Дифракция

Отклонение световых волн от прямолинейного распространения. В результате получается интерференционная картина – чередование светлых и темных полос. Этот эффект не позволяет различать близко расположенные элементы изображения.

Кружок рассеяния

Основополагающий критерий для определения глубины резкости.

Обратный фокус

Положение объектива относительно ПЗС-матрицы, при котором в самых худших условиях освещенности изображение резкое.

Относительное отверстие

Отношение диаметра зрачка к фокусному расстоянию.

Освещенность

Величина светового потока, приходящего на единицу площади

Разрешающая способность

Способность объектива давать раздельное изображение мелких деталей, приходящихся на 1 мм изображения.

Световой поток

Мощность лучистой энергии, оцениваемая по световому ощущению, которое она производит на глаз.

Сервоуправление

Изменение значения диафрагмы дистанционно (с пульта управления).

Сила света

Световой поток, распространяющийся внутри телесного угла, равного 1 стерадиану.

Телеобъектив

Объектив с углом зрения меньше 30 градусов.

Трансфокатор

кратность

Объектив, позволяющий изменять значение фокусного расстояния дистанционно с пульта управления

Фокусировка объектива

Получение требуемой резкости оптического рисунка на ПЗС-матрице.

Широкоугольный объектив

Объектив с углом зрения больше 60 градусов.

Цветовая температура

Температура, при которой абсолютно черное тело излучает свет такого же спектрального состава, как рассматриваемый свет.

Единственная из световых величин, которую глаз воспринимает непосредственно. Она не зависит от расстояния рассматривания.

Автоматическое управление диафрагмой сигналами постоянного тока, поступающими из видеокамеры.

Автоматическое управление диафрагмой по видеосигналу, поступающему из видеокамеры.